About seller
Reciprocal effects were found for tomato fruit quality and DNA methylation. The epigenetic identity of reciprocal hybrids indicates that DNA methylation might be one of the mechanisms involved in POEs. Crosses between different genotypes and even between different species are commonly used in plant breeding programs. Reciprocal hybrids are obtained by changing the cross direction (or the sexual role) of parental genotypes in a cross. Phenotypic differences between these hybrids constitute reciprocal effects (REs). The aim of this study was to evaluate phenotypic differences in tomato fruit traits and DNA methylation profiles in three inter- and intraspecific reciprocal crosses. REs were detected for 13 of the 16 fruit traits analyzed. The number of traits with REs was the lowest in the interspecific cross, whereas the highest was found in the cross between recombinant inbred lines (RILs) derived from the same interspecific cross. An extension of gene action analysis was proposed to incorporate parent-of-ori intraspecific reciprocal crosses. REs were detected for 13 of the 16 fruit traits analyzed. The number of traits with REs was the lowest in the interspecific cross, whereas the highest was found in the cross between recombinant inbred lines (RILs) derived from the same interspecific cross. Elsubrutinib An extension of gene action analysis was proposed to incorporate parent-of-origin effects (POEs). Maternal and paternal dominance were found in four fruit traits. REs and paternal inheritance were found for epiloci located at coding and non-coding regions. The epigenetic identity displayed by the reciprocal hybrids accounts for the phenotypic differences among them, indicating that DNA methylation might be one of the mechanisms involved in POEs. In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL-RANKL receptor interaction. In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG. Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) regulatory system of osteoclast differentiation induction, activation, and survival. Recent studies have indicated the potential of stem cell therapy in combination with cytokines to restore the bone repair via migration and homing of stem cells to the defected area. The present study aimed to investigate the mobilization and recruitment of mesenchymal stem cells (MSCs) in response to SDF-1. Herein, the knockout rat model of the bone defect (BD) was treated with the induced membrane technique. Then, wild type Wistar rats and SDF-1-knockout rats were selected for the establishment of BD-induced membrane (BD-IM) models and bone-graft (BG) models. The number of MSCs was evaluated by flow cytometry, along with the expression pattern of the SDF-1/CXCR4 axis as well as osteogenic factors was identified by RT-qPCR and Western blot analyses. Finally, the MSC migration ability was assessed by the Transwell assay. Our data illustrated that in the induced membrane tissues, the number of MSCs among the BD-IM modeled rats was increased, whereas, a lower number was documented among BG modeled rats. Besides, we found that lentivirus-mediated over-expression of SDF-1 in BG modeled rats could activate the SDF-1/CXCR4 axis, mobilize MSCs into the defect area, and up-regulate the osteogenic proteins. Collectively, our study speculated that up-regulation of SDF-1 promotes the mobilization and migration of MSCs through the activation of the SDF-1/CXCR4 signal pathway.Collectively, our study speculated that up-regulation of SDF-1 promotes the mobilization and migration of MSCs through the activation of the SDF-1/CXCR4 signal pathway.This study aimed to explore communities and the ethanol-fermenting ability of yeasts in fresh coconut, palmyra, and nipa palm saps. From the 90 samples of coconut, palmyra, and nipa palm saps, 204 yeast isolates were isolated and identified as 15 species in the phylum Ascomycota and a species (one strain) in Basidiomycota. Saccharomyces cerevisiae, Hanseniaspora guilliermondii, and Lachancea thermotolerans were found in the saps of all three palm species. Candida tropicalis and Pichia kudriavzevii were obtained from the coconut and palmyra palm saps, Hanseniaspora vineae, Lachancea fermentati, and Pichia manshurica were present in the coconut and nipa palm saps, whereas Torulaspora delbrueckii was found in the palmyra and nipa palm saps. The species with the highest occurrence in the saps of coconut, palmyra, and nipa palms was S. cerevisiae with 76.67%, 86.70%, and 100% frequency of occurrence, respectively. Using principal coordinates analysis for ordination, no marked difference was observed in the yeast communities from the saps of the three palm species. A total of 199 isolates were found to possess ethanol-fermentation ability when cultivated using shake flask in 160 g/L of glucose medium at 28°C for 48 h. Lachancea fermentati YSP-383, isolated from nipa palm sap, produced the highest amount of ethanol (76.74 g/L). Twenty-six isolates of Candida sanyaensis (1), C. tropicalis (1), H. guilliermondii (7), L. fermentati (8), L. thermotolerans (1), Pichia kudriavzevii (2), and S. cerevisiae (6) produced high amounts of ethanol ranging from 69.57 to 76.74 g/L. The result demonstrated that yeasts in the palm saps could play roles in the natural fermentation of palm saps.Rotavirus infection is one of the leading causes of acute gastroenteritis in children in their first years of life. We studied the genotypic diversity of rotavirus A (RVA) strains in Nizhny Novgorod, Russia, during the period 2016-19. In total, 4714 samples of faeces from children admitted to the Nizhny Novgorod Hospital for Infectious Diseases with acute gastroenteritis were examined. The share of rotavirus-positive samples was 31.5% in 2016-17. It decreased to 21.6% in 2018-19. In Nizhny Novgorod, all six global types of RVA were detected (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]), as well as sporadic samples with genotypes G9P[4], G3P[9], G9P[9], G8P[8], G2P[8], G4P[4], G3P[9]. The fraction of strains with genotype G2P[4] gradually increased from 5.9% in 2016-17 to 39.1% in 2018-19. Simultaneously, the proportion of G9P[8] strains decreased from 63.2% to 27.7% in the same period. Phylogenetic analysis showed that rotaviruses with the G2P[4] genotype carried ubiquitous alleles of the VP7 and VP4 genes during the period of their prevalence G2-IVa-1 and G2-IVa-3; P[4]-IVa and P[4]-IVb.