sheettire5
sheettire5
0 active listings
Last online 2 weeks ago
Registered for 2+ weeks
Isiala ngwa North, Abia, Nigeria
513631Show Number
Send message All seller items (0) www.selleckchem.com/products/abraxane-nab-paclitaxel.html
About seller
Crystalline cellulose, the most abundant natural polymer on earth, features exceptional physical and mechanical properties. Using atomistic simulation, this study reports the mechanical behavior of cellulose-cellulose nanocrystal hydrophilic interface and systematically examines the impact of loading direction, interfacial moisture, misalignment and surface types. The density, orientation or distribution of interfacial hydrogen bonds are shown to explain the series of findings presented here, including stick-slip behavior, stiffness recovery after an irreversible slip, direction-dependent behavior and weakening induced by hydration or misalignment. Correlation analysis shows that, regardless of the various loading conditions, the interfacial stress, shear velocity and interaction energy are strongly correlated with the density of interfacial hydrogen bonds, which quantitatively supports the central role of hydrogen bonding. Based on this correlation, the friction force rendered by a single hydrogen bond is inferred to be fHB ∼1.3 E-10 N under a shearing speed of 1 m s-1.The bioactive glasses (BGs)/Cisplatin and magnetic bioactive glasses (MBGs)/Cisplatin were doped into the chitosan (CS)-grafted- poly (ε-caprolactone) (PCL) nanofibers for controlled release of Cisplatin under various pH values and temperatures. Nab-Paclitaxel in vitro The simultaneous effect of chemotherapy and hyperthermia was investigated against MG-63 osteosarcoma cells by treating of cells with Cs-g-PCL/MBGs/Cisplatin under an alternating magnetic field. The synthesized nanofibers were characterized using XRD, FTIR, 1H NMR, SEM, and EDX analysis. The bioactivity, and drug loading efficiency of fibers were investigated. There was no initial burst release of Cisplatin from BGs/Cisplatin and MBGs/Cisplatin loaded Cs-g-PCL/MBGs nanofibers and the Cisplatin release rate was accelerated under pH of 5.5 and temperature of 43 °C compared with physiological condition. The apoptotic/necrotic effect indicated that 100 μg mL-1 nanofibers was optimum for killing of MG-63 cells. The future researches could be focused on the application of nanofibers as an implantable device next to a bone tumor for bone cancer therapy in vivo.The structural disorganization of different starches in a 1-ethyl-3-methylimidazolium acetate ([Emim][OAc])/water mixture (16 mol./mol.) at room temperature (25 °C) was studied. For normal cereal starches, which have pinholes randomly dispersed on the granule surface or only in the outermost annular region (wheat starch), the aqueous ionic liquid (IL) completely destroyed the granule structure within 1-1.5 h. Pea starch (PeS) granules with cracks were destroyed by the aqueous IL within 6 h. High-amylose maize starch (HAMS), as well as potato and purple yam starches (PoS and PYS), which have a dense and thick outer granule layer, were even more resistant to the action of the solvent. Structural disorganization was accompanied by increased viscosity and controlled the binding of water molecules with starch chains. From this study, we concluded that the surface characteristics of starch granule are an important factor affecting starch structural disorganization in an aqueous IL.Electrospun nanofiber membrane (ENM) shows great advantage and potential in wastewater treatment due to its unique properties. However, exploring a green and efficient ENM for remediation of complex wastewater, such as simultaneous containing oils, dyes and heavy metal ion, remains challenging. In this work, a cellulose-based photocatalytic ENM, is constructed for this purpose. The hybrid ENM is prepared via electrospinning deacetylated cellulose acetate/polyvinyl pyrrolidone (CeP) nanofibers as skeleton cores and in-situ synthesis of beta hydroxyl oxidize iron decorated iron-based MOF (β-FeOOH@MIL-100(Fe)) heterojunctions as photocatalytic sheaths. The core-sheath structured ENM has ultrahigh MIL-100(Fe) loading (78 wt%), large surface areas (1105 m2/g) and well-dispersed β-FeOOH nanorods. Thanks to these porous and hydrophilic MIL-100(Fe), along with a robust photocatalysis-Fenton synergy from β-FeOOH@MIL-100(Fe), the as-prepared ENM shows outstanding performances with simultaneous high removal efficiency for oils (99.5 %), dyes (99.4 %) and chromium ion (Cr(VI)) (99.7 %). Additionally, the photocatalytic ENM can achieve a long-term reuse owing to its inherent self-cleaning function.Chitosan, a well-known biopolymer due to its unique properties, has received considerable attention as a result of the amine group activity that locates on the backbone of chitosan. To improve the mechanical and antibacterial characteristics of chitosan, various modifications have been used. Amino acids, the monomeric units of proteins, among all other compounds have been chosen to discuss as promising materials for wound healing in combination with chitosan. This review aims to provide an up-to-date overview of the methods used for modification of chitosan and the potential biomedical application, in particular wound healing, reported in the literature during the last five years.This study's primary purpose was to develop a new technique to stabilize high value-added bioactive volatile compounds present in essential oils to ensure their usability as chemical raw materials with enhanced stability. Selective isolation and encapsulation of various volatile compounds by changing the electrospraying process parameter, including voltage, flow rate, and β-Cyclodextrin concentration, were attributed to the formation of inclusion complexes between β-cyclodextrin and volatile compounds. Investigations regarding the effects of independent process variables on simultaneous isolation and selective encapsulation of volatile compounds during electrospraying of β-cyclodextrins were carried out mainly with TLC analyses. The TLC analyses were confirmed with GC, GC-MS, and 1H NMR analyses. It was possible to obtain nanoparticles with an average particle size between 25-160 nm with the designed system. Obtained data revealed that isolation and encapsulation of cumin aldehyde, camphene, isoborneol, and hexadecanoic acid, benzyl benzoate from labdanum essential oil were successfully achieved.

sheettire5's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register