About seller
This work paves the way for the utilization of the C2 position of the pyridine ring and the development of chiral 2-substituted DMAP-N-oxides as efficient acyl transfer catalysts.Terminal uranium nitrides have so far proven impossible to isolate by photolysis of azides. Here we report the second ever example of an isolated terminal uranium(VI) nitride. We show that the terminal nitride [NBu4][U(OSi(OtBu)3)4(N)], 3, can be prepared upon photolysis with UV light of the U(IV) azide analogue. This is achieved by careful tailoring of the azide precursor and of the reaction conditions. Complex 3 is stable under ambient conditions but reacts readily with electrophiles (H+ and CO).We present a novel web server, named gridSolvate, dedicated to the prediction of biomolecular hydration properties. Given a solute in atomic representation, such as a protein or protein-ligand complex, the server determines positions and excess chemical potential of buried and first hydration shell water molecules. Calculations are based on our semiexplicit hydration model that provides computational efficiency close to implicit solvent approaches, yet captures a number of physical effects unique to explicit solvent representation. The model was introduced and validated before in the context of bulk hydration of drug-like solutes and determination of protein hydration sites. Current methodological developments merge those two avenues into a single, easily accessible tool. Here, we focus on the server's ability to predict water distribution and affinity within protein-ligand interfaces. We demonstrate that with possibly minimal user intervention the server correctly predicts the locations of 77% of interface water molecules in an external set of test structures. The server is freely available at https//gsolvate.biomod.cent.uw.edu.pl.The solid-state structure of a discrete chloride monohydrate species, [Cl(H2O)]-, is reported for the first time. It was isolated as a salt of the tris(dipropylamino)cyclopropenium cation and has been structurally characterized by X-ray and neutron diffraction. buy C25-140 Infrared (IR), far-infrared, and Raman spectroscopic studies were also carried out. Additionally, the D2O and HDO isotopomers were investigated. Of the six fundamental vibrational modes, only the out-of-plane bend ν3 was not observed as it forms an IR- and Raman-inactive local mode phonon.Photocatalytic reduction of CO2 to value-added fuels is a promising route to reduce global warming and enhance energy supply. However, poor selectivity and low efficiency of catalysts are usually the limiting factor of their applicability. Herein, a photoinduction method was developed to achieve the formation of Cu single atoms on a UiO-66-NH2 support (Cu SAs/UiO-66-NH2) that could significantly boost the photoreduction of CO2 to liquid fuels. Notably, the developed Cu SAs/UiO-66-NH2 achieved the solar-driven conversion of CO2 to methanol and ethanol with an evolution rate of 5.33 and 4.22 μmol h-1 g-1, respectively. These yields were much higher than those of pristine UiO-66-NH2 and Cu nanoparticles/UiO-66-NH2 composites. Theoretical calculations revealed that the introduction of the Cu SAs on the UiO-66-NH2 greatly facilitates the conversion of CO2 to CHO* and CO* intermediates, leading to excellent selectivity toward methanol and ethanol. This study provides new insights for designing high-performance catalyst for photocatalytic reduction of CO2 at the atomic scale.A silver-catalyzed cycloisomerization/1,6-conjugate addition of homopropargyl sulfonamides to p-quinone methides to access diverse diarylmethine substituted dihydropyrroles has been disclosed. The reaction pathway involves an intramolecular cascade cyclization of homopropargyl sulfonamides to generate a highly reactive dihydropyrrole intermediate in situ followed by conjugate addition with p-quinone methides. This method provides an efficient and scalable route for the synthesis of 3-diarylmethine substituted dihydropyrroles, in one pot.A metal-free intramolecular aminophosphination of sulfonamidoallenes with diarylphosphine oxides and Tf2O was developed. This method offers a general and practical procedure to construct valuable alkenylphosphine-substituted N-heterocycles via the bifunctionalization reaction of allenes in good yields under mild conditions.A new air-stable catalyst for the oxidative dehydrogenation of benzylic alcohols under ambient conditions has been developed. The synthesis and characterization of this compound and the related monomeric and dimeric V(IV)- and V(V)-pinF (pinF = perfluoropinacolate) complexes are reported herein. Monomeric V(IV) complex (Me4N)2[V(O)(pinF)2] (1) and dimeric (μ-O)2-bridged V(V) complex (Me4N)2[V2(O)2(μ-O)2(pinF)2] (3a) are prepared in water under ambient conditions. Monomeric V(V) complex (Me4N)[V(O)(pinF)2] (2) may be generated via chemical oxidation of 1 under an inert atmosphere, but dimerizes to 3a upon exposure to air. Complexes 1 and 2 display a perfectly reversible VIV/V couple at 20 mV (vs Ag/AgNO3), whereas a quasi-reversible VIV/V couple at -865 mV is found for 3a. Stoichiometric reactions of 3a with both fluorenol and TEMPOH result in the formation of (Me4N)2[V2(O)2(μ-OH)2(pinF)2] (4a), which contains two V(IV) centers that display antiferromagnetic coupling. In order to structurally characterize the dinuclear anion of 4a, K(18C6)+ countercations were employed, which formed stabilizing K···O interactions between the counterion and each terminal oxo moiety and H-bonding between the oxygen atoms of the crown ether and μ-OH bridges of the dimer, resulting in K(18C6)2[V2(O)2(μ-OH)2(pinF)2] (4b). The formal storage of H2 in 4a is reversible and proton-coupled electron transfer (PCET) from crystals of 4a regenerates 3a upon exposure to air over the course of several days. Furthermore, the reaction of 3a (2%) under ambient conditions with excess fluorenol, cinnamyl alcohol, or benzyl alcohol resulted in the selective formation of fluorenone (82% conversion), cinnamaldehyde (40%), or benzaldehyde (7%), respectively, reproducing oxidative alcohol dehydrogenation (OAD) chemistry known for VO x surfaces and demonstrating, in air, the thermodynamically challenging selective oxidation of alcohols to aldehydes/ketones.