About seller
Mesenchymal stem cells (MSCs) are promising therapeutic tools in regenerative medicine. In particularly adipose tissue derived MSC (AMSC) has powerful potential for the therapeutics of rheumatoid arthritis (RA) because these cells can control immune balance. RA systemically occurs autoimmune disease. Interestingly, IL-1 receptor antagonist deficient (IL-1ra ) mice induce inflammation in joints like RA. In RA therapy, although AMSC improves the inflammation activity, it is little known to play roles of extracellular microvesicles (EV) for improvement of RA. To clarify the MSC-derived EVs are involved amelioration mechanisms for RA by themselves, we examined the functional effects of development for RA by AMSC-EVs. We isolated AMSCs derived mice adipose tissue and purified EVs from the culture supernatant of AMSCs. To examine whether EVs can improve RA, we administrated EVs or AMSCs to IL-1ra knockout mice as RA model mice. We analyzed EVs-included factor by western blot methods and RA improvement effect by ELISA. In this study, we showed that the swellings of joints on mice in wild type AMSC and that in AMSC-EVs decreased than that in IL-1ra mice-AMSC-EVs and in none-treated. We detected IL-1ra expression in AMSC-EVs in wild type mice but not that in IL-1ra mice. Proinflammatory cytokine expression changes in mice showed in AMSCs and AMSC-EVs, but no apparent differences cytokine expressions were detected in IL-1ra mice. In this study, we concluded that MSCs might improve RA by the transferring of factors such as IL-1ra, which are included their MSC derived- EVs.In this study, we concluded that MSCs might improve RA by the transferring of factors such as IL-1ra, which are included their MSC derived- EVs.Osteonecrosis of the femoral head (ONFH) is a progressive disease with a complex etiology and unclear pathogenesis, resulting in severe hip pain and dysfunction mainly observed in young patients. Although total hip arthroplasty (THA) is the most effective treatment for patients with ONFH in the terminal stage, the results of THA in young patients or active populations are often not favorable, with some complications related to the prosthesis. With the development of biotechnology, an increasing number of studies pay attention to use of stem cells for the treatment of ONFH. Stem cells are characterized by the ability to self-renew and differentiate into multiple cell types, including differentiation into osteoblasts and endothelial cells to mediate bone repair and angiogenesis. Furthermore, stem cells can offer growth factors to promote blood supply in the necrotic regions by paracrine effects. limertinib Therefore, stem cell therapy has become one of the hip-preserving alternatives for ONFH. This review summarized the current trends in stem cell therapy for ONFH, from clinical applications to related basic research, and showed that an increasing number of studies have confirmed the effectiveness of stem cell therapy in ONFH. However, many unsolved problems and challenges in practical applications of stem cell therapy still exist, such as patient selection, standardized procedures, safety assessment, and the fate of transplanted cells in the body. Additional studies are required to find ideal cell sources, appropriate transplantation methods, and the optimal number of cells for transplantation.Skeletal muscle injuries have bothered doctors and caused great burdens to the public medical insurance system for a long time. Once injured, skeletal muscles usually go through the processes of inflammation, repairing and remodeling. If repairing and remodeling stages are out of balance, scars will be formed to replace injured skeletal muscles. At present, clinicians usually use conventional methods to restore the injured skeletal muscles, such as flap transplantation. However, flap transplantation sometimes needs to sacrifice healthy autologous tissues and will bring extra harm to patients. In recent years, stem cells-based tissue engineering provides us new treatment ideas for skeletal muscle injuries. Stem cells are cells with multiple differentiation potential and have ability to differentiate into adult cells under special condition. Skeletal muscle tissues also have stem cells, called satellite cells, but they are in small amount and new muscle fibers that derived from them may not be enough to replace injured fibers. Bone marrow mesenchymal stem cells (BM-MSCs) could promote musculoskeletal tissue regeneration and activate the myogenic differentiation of satellite cells. Biomaterial is another important factor to promote tissue regeneration and greatly enhance physiological activities of stem cells in vivo. The combined use of stem cells and biomaterials will gradually become a mainstream to restore injured skeletal muscles in the future. This review article mainly focuses on the review of research about the application of BM-MSCs and several major biomaterials in skeletal muscle regeneration over the past decades. In-body tissue architecture (iBTA) technology, based on cell-free tissue engineering, can produces collagenous tissues for implantation by subcutaneous embedding a designed mold. The aim of this study was to evaluate the biocompatibility of iBTA-induced "Biosheet®" collagenous sheets, as scaffold materials for bladder reconstruction. Canine Biosheet® implants were prepared by embedding molds into subcutaneous pouches in beagles for 8 weeks. A part of canine bladder wall was excised (2×2cm) and repaired by patching the same sized autologous Biosheet®. The Biosheet® implants were harvested 4 weeks (n=1) and 12 weeks (n=3) after the implantation and evaluated histologically. No disruption of the patched Biosheet® implants or urinary leakage into the peritoneal cavity was observed during the entire observation periods. There were no signs of chronic inflammation or Biosheet® rejection. The urine-contacting surface of luminal surface of the Biosheet® was covered with a multicellular layer of urothelium cells 4 weeks after implantation. α-SMA-positive muscle cells were observed at the margin of the Biosheet® implants at 12 weeks after the implantation. In addition, in the center of the Biosheet® implants, the formation of microvessels stained as α-SMA-positive was observed. Biosheet® implants have biocompatibility as a scaffold for bladder reconstruction, indicating that they may be applicable for full-thickness bladder wall substitution. Further studies are required for definitive evaluation as a scaffold for bladder reconstruction.Biosheet® implants have biocompatibility as a scaffold for bladder reconstruction, indicating that they may be applicable for full-thickness bladder wall substitution. Further studies are required for definitive evaluation as a scaffold for bladder reconstruction.