yamporter67
yamporter67
0 active listings
Last online 4 months ago
Registered for 4+ months
Umuahia North, Yobe, Nigeria
708202Show Number
Send message All seller items (0) www.selleckchem.com/products/fumarate-hydratase-in-1.html
About seller
In this work, the nonlinear optical (NLO) response of some graphene dispersions is investigated under low (i.e., 10 Hz) and high (i.e., 80 MHz) repetition rate femtosecond (fs) laser excitation conditions, using $Z$Z-scan, optical Kerr effect (OKE), and a combination of $Z$Z-scan and thermal lensing techniques. It is shown, that the NLO response of graphene dispersions is negligible under low repetition rate fs laser excitation, while it becomes very large under high repetition rate laser excitation. In the latter case, it is shown that the observed very large NLO response arises entirely from thermal cumulative effects.Two generation mechanisms-optical perturbation and acoustic radiation force (ARF)-were investigated where high frame rate ultrasound imaging was used to track the propagation of induced SAWs. We compared ARF-induced SAWs with laser-induced SAWs generated by laser beam irradiation of the uniformly absorbing tissue-like viscoelastic phantom, where light was preferentially absorbed at the surface. We also compared the frequency content of SAWs generated by ARF versus pulsed laser light, using the same duration of excitation. Differences in the SAW bandwidth were expected because, in general, laser light can be focused into a smaller area. Finally, we compared wave generation and propagation when the wave's origin was below the surface. We also investigated the relationship between shear wave amplitude and optical fluence. The investigation reported here can potentially extend the applications of laser-induced SAW generation and imaging in life sciences and other applications.Here, we demonstrate an all-silicon photonic switch, working at an infrared communication wavelength and pumped by spatial light, where a ring resonator and a metasurface absorber are both designed in photonic crystals and monolithically integrated on a silicon-on-insulator wafer. Through selective doping, the absorber gets a pump absorption completely different from near zero of the resonator. Based on the thermo-optical effect, the device is capable of tuning the wavelength of the guided mode by $\sim341\;\rm pm/mW$∼341pm/mW and switching in time $ \lt 1.0\;\unicodex00B5 \rm s$ less then 1.0µs to the pump response. The high responsivity and switching speed as well as all-silicon processing techniques make the design potentially for free-space optical communication and detection.A source of hyper-entangled photons plays a vital role in quantum information processing, owing to its high information capacity. In this Letter, we demonstrate a convenient method to generate polarization and orbital angular momentum (OAM) hyper-entangled photon pairs via spontaneous four-wave mixing (SFWM) in a hot $ ^87\rm Rb $87Rb atomic vapor. The polarization entanglement is achieved by coherently combining two SFWM paths with the aid of two beam displacers that constitute a phase self-stabilized interferometer, and OAM entanglement is realized by taking advantage of the OAM conservation condition during the SFWM process. Our hyper-entangled biphoton source possesses high brightness and high nonclassicality and may have broad applications in atom-photon-interaction-based quantum networks.Microlens arrays (MLAs) are widely used in optical imaging, dense wavelength division multiplexing, optical switching, and microstructure patterning, etc. However, the light modulation capability for both the conventional refractive-type MLA and planar diffractive-type MLA is still staying at the diffraction-limited scale. Here we propose and experimentally demonstrate a high numerical aperture (NA) supercritical lens (SCL) array which could achieve a sub-diffraction-limited focal spot lattice in the far field. The intensity distribution for all the focal spots has good uniformity with the lateral size around $0.45\lambda \rm /NA$0.45λ/NA (0.75X Airy unit). The elementary unit in the SCL array composes a series of concentric belts with a feature size in micrometer scale. By utilizing an ultrafast ultraviolet lithography technique, a centimeter scale SCL array could be successfully patterned within 10 mins. Our results may provide possibilities for the applications in optical nanofabrication, super-resolution imaging, and ultrafine optical manipulation.We experimentally demonstrate Kramers-Kronig detection of four 20 Gbaud 16-quadrature-amplitude-modulated (QAM) channels after 50 km fiber transmission using two soliton Kerr combs as signal sources and local oscillators. The estimated carrier phase at the receiver for each of the channels is relatively similar due to the coherence between the frequency comb lines. FumaratehydrataseIN1 The standard deviation of the estimated carrier phase difference of the channels is less than 0.08 rad after 50 km single-mode fiber (SMF) transmission. This enables the carrier phase recovery derived from one channel to be shared among multiple channels. In the back-to-back scenario, the bit error rate (BER) performance for shared carrier phase recovery shows an optical signal-to-noise ratio penalty of $\sim0.5\;\rm dB$∼0.5dB compared to the BER performance for carrier phase recovery when derived for each channel independently. BERs below the forward error correction threshold are achieved after 50 km SMF transmission with both independent and shared carrier phase recovery for four 20-Gbaud 16-QAM signals.In this Letter, we report a segmented large-scaled lightweight diffractive telescope testbed newly built in our laboratory. The telescope, consisting of one 710-mm-diameter element in the center surrounded by eight 352-mm-diameter elements and a smaller eyepiece of achromatic lenses, can realize wide-band high-resolution imaging of 0.55-0.65 µm. The stitching errors are coarsely corrected by adjusting the motion stage mounted on each element. In particular, an optical synthesis system inserted behind the eyepiece is designed to compensate the residual tip-tilt-piston errors. We present the experimental imaging result of two stitched elements, which is the first successful experimental verification obtained by a practical segmented diffractive telescope to enhance the resolution. Moreover, spatial modulation diversity technology is used to restore the synthetic image so as to improve its quality and contrast.

yamporter67's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register