About seller
These results suggest that a deficiency of type I PAF-AH catalytic subunits causes an increase in body weight, in part, due to reduced testosterone levels in male mice.Local anesthetic toxicity is closely related to neuronal death and activation of the inflammatory response. Dexmedetomidine (Dex) is an adrenergic α2 receptor agonist that can reduce the neurotoxicity induced by lidocaine. It also has anti-inflammatory effects. However, the mechanism underlying the neuroprotective effects of Dex against lidocaine-induced toxicity remains to be defined. We hypothesized that Dex exerts its neural protective effect through inhibiting inflammasome activation and through anti-pyroptosis effects against local anesthetic-induced nerve injury. In a rat model of lidocaine-induced spinal cord injury, we studied the protective effect of Dex on lidocaine-induced changes in spinal cord function, inflammasome formation and pyroptosis, pro-inflammatory cytokine expression, and protein kinase C (PKC)-δ phosphorylation. Dex reduced lidocaine-induced neurotoxicity and inhibited PKC-δ phosphorylation in the spinal cord of rats. Furthermore, Dex inhibited pyroptosis and inflammasome formation (caspase-1, NLRP3, and apoptosis-associated speck-like protein (ASC)). Finally, Dex attenuated interleukin (IL)-1β and IL-18 expression, as well as microglia response. In conclusion, Dex can reduce the severity of lidocaine-induced spinal cord injury in rats by inhibiting priming and inflammasome activation and reducing pyroptosis via PKC-δ phosphorylation.Signal-transducing adaptor protein (STAP)-2 is an adaptor molecule involved in regulation of several intracellular signaling events in immune cells. STAP-2 contains a pleckstrin homology domain at the N-terminus, an src homology domain in the central portion and a proline-rich region at the C-terminus. STAP-2 also has a YXXQ motif, which is a potential signal transducer and activator of transcription (STAT)3-binding site. STAP-2 influences the STAT3 and STAT5 activity, integrin-mediated T cell adhesion, chemokine-induced T cell migration, Fas-mediated T cell apoptosis, Toll-like receptor-mediated macrophage functions, macrophage colony-stimulating factor-induced macrophage activation, and the high-affinity immunoglobulin E receptor-mediated mast cell activation. This article reviews the current understanding of roles of the STAP-2 during immune and/or inflammatory responses, and discusses possible therapeutic applications of targeting STAP-2 proteins in immune-related disorders.Brain inflammation is a pathological characteristic of neurodegenerative diseases. In this condition, excessively activated microglia elevate proinflammatory mediator levels. We previously reported that panaxytriol inhibited lipopolysaccharide (LPS)-induced microglia activation in vitro. However, the effects of panaxytriol on microglia activation in vivo require confirmation. In the present study, we found that panaxytriol suppressed both microglia and astrocyte activation by injected LPS intracerebrally to mice with LPS-induced brain inflammation. Panaxytriol was more effective on microglia than astrocytes. Moreover, panaxytriol tended to reduce LPS-induced spontaneous motor activity dysfunction. These results suggested that panaxytriol could improve brain health by suppressing microglia activation in neurodegenerative diseases.To prevent cognitive decline, non-pharmacological therapies such as reminiscence for mild cognitive impairment (MCI) are required, however, the use of nursing homes was limited due to coronavirus disease 2019 (COVID-19). Therefore, the demand for remote-care is increasing. We hypothesized that immersive virtual reality (iVR) could be used more effectively than conventional reminiscence for anxiety. We first examined the effectiveness and safety of reminiscence using iVR (iVR reminiscence session) in patients with MCI. After COVID-19 imposed restriction on visiting nursing homes, we conducted online iVR reminiscence session (remote iVR reminiscence session) and compared its effectiveness with that of interpersonal iVR reminiscence session (face-to-face iVR reminiscence session). CPI1205 The results of two elderly with MCI suggested that iVR reminiscence could reduce anxiety and the burden of care without serious side effects. The effects of remote iVR reminiscence might be almost as effective as those of face-to-face one.Angiotensin III (Ang III) is a heptapeptide derived from Ang II that has been confirmed as the preferred agonist of angiotensin II type 2 receptor (AT2R). Recent studies have revealed AT2R mainly exerts anti-inflammation effects. However, the effects of the Ang III/AT2R pathway on adipocytes remain unknown. Here, the effects of Ang III on glucose uptake were examined. The results showed that AT2R expression was upregulated during adipogenesis in 3T3-L1 preadipocytes, whereas AT1R expression was diminished. Also, Ang III (10 nM) significantly increased glucose uptake by 3T3-L1 adipocytes, which was blocked by PD123319, an AT2R blocker, but not by irbesartan, an AT1R blocker. Ang III also induced the expression of glucose transporter type 1 (GLUT1). These stimulatory effects were inhibited by pretreatment with PD123319, but not with irbesartan. Together, these results indicate that Ang III enhances glucose uptake by upregulating GLUT1 expression via AT2R.Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-β-erythroidine, a selective α4β2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner.