About seller
Such microwire resonators can be used as compact microlasers or sensing elements in photonic sensors.This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency metricηwas derived for fully-sampled experiments which can be used to both optimize and compare sequences. Here we optimize and compare several steady-state and transient gradient-echo based qMRI methods, such as magnetic resonance fingerprinting (MRF), for jointT1andT2mapping. The impact of undersampling was also evaluated, assuming incoherent aliasing that is treated as noise by parameter estimation.In vivovalidation of the efficiency metric was also performed. Transient methods such as MRF can be up to 3.5 times more efficient than steady-state methods, when spatial undersampling is ignored. If incoherent aliasing is treated as noise during least-squares parameter estimation, the efficiency is reduced in proportion to the SNR of the data, with reduction factors of 5 often seen for practical SNR levels.In vivovalidation showed a very good agreement between the theoretical and experimentally predicted efficiency. This work presents and validates an efficiency metric to optimize and compare the performance of qMRI methods. Transient methods were found to be intrinsically more efficient than steady-state methods, however the effect of spatial undersampling can significantly erode this advantage.Objective.Flow-controlled expiration (FLEX) has been shown to attenuate ventilator-induced lung injury in animal models. It has also shown to homogenize compartmental pressure distribution in a physical model of the inhomogeneous respiratory system having independent compartments. We hypothesized that the homogenizing effects of FLEX are also effective in this regard when the independence of compartments is suspended by simulated chest wall compliance.Approach.A four compartment physical model of the respiratory system having chest wall compliance (137 ml/cmH2O) was developed. Two of the four compartments had high compliance (18 ml/cmH2O) and two had low compliance (10 ml/cmH2O). These compartments were each combined with either high (6.8 cmH2O·s/l) or low resistance (3.5 cmH2O·s/l). The model was ventilated in the volume-controlled ventilation mode with either passive expiration or with FLEX. The maximal pressure differences (ΔPmax) and the maximal differences of mean pressure (ΔPmean) between the compartments during expiration were determined.Main results.With passive expiration ΔPmaxreached up to 3.4 ± 0.03 cmH2O but only 0.9 ± 0.01 cmH2O with FLEX (p less then 0.001). Maximal differences of ΔPmeanwere significantly lower with FLEX as compared to passive expiration (extending up to 0.4 ± 0.04 cmH2O versus 2.0 ± 0.15 cmH2O,p less then 0.001).Significance.The homogenizing effects of FLEX on compartmental pressure distribution could be reproduced in a more complex physical model of the inhomogeneous respiratory system having chest wall compliance and might be a mechanism underlying the lung protective effects of ventilation with FLEX.Objective.Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings offer a high spatiotemporal resolution approach to study human brain and understand the underlying mechanisms mediating cognitive and behavioral processes. However, the high susceptibility of EEG to MRI-induced artifacts hinders a broad adaptation of this approach. More specifically, EEG data collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram artifacts, in addition to artifacts of physiological origin. There have been several attempts for reducing these artifacts with manual and time-consuming pre-processing, which may result in biasing EEG data due to variations in selecting steps order, parameters, and classification of artifactual independent components. Thus, there is a strong urge to develop a fully automatic and comprehensive pipeline for reducing all major EEG artifacts. In this work, we introduced an open-access toolbox with a fully automatic pipeline for ed up advancement of EEG analysis and enhance replication by avoiding experimenters' preferences while allowing for processing large EEG-fMRI cohorts composed of hundreds of subjects with manageable researcher time and effort.Thermoelectric (TE) materials provide great potentials of recycling waste energy and solid-state cooling. The corresponding conversion efficiency has been receiving a huge attention in developing TE devices, and largely depends on the thermal and electrical transport properties. The magnetism-enhanced thermoelectrics opens a capability of making thermoelectricity a future leader in sustainable energy development and offer an intriguing platform for both fundamental physics and application prospects. In this review, state-of-the-art TE materials were summarized using magnetism point of view, providing a diagram of the charge, lattice, orbit and spin degrees of freedom. Fundamental knowledge of magnetism-induced TE effects is discussed. The underlying thermo-electro-magnetic merits were developed via the superparamagnetism- and magnetic transition-enhanced electron scattering, the field-dependent magnetoelectric coupling, and the magnon- and phonon-drag Seebeck effects. Finally, it stated several thermal-electronic and spin current-induced TE materials at the end of topics, highlighted future possible strategies for further improving ZT, as well as gave a brief outline of ongoing research challenges and open questions in this nascent field.A framework is developed for estimating the volume fraction of fat in steatotic livers from viscoelastic measures of shear wave speed and attenuation. These measures are emerging on clinical ultrasound systems' elastography options so this approach can become widely available for assessing and monitoring steatosis. The framework assumes a distribution of fat vesicles as spherical inhomogeneities within the liver and uses a composite rheological model (Christensen 1969J. Mech. Phys. Solids1723-41) to determine the shear modulus as a function of increasing volume of fat within the liver. We show that accurate measurements of shear wave speed and attenuation provide the necessary and sufficient information to solve for the unknown fat volume and the underlying liver stiffness. Extension of the framework to compression wave measurements is also possible. AZ 960 Data from viscoelastic phantoms, human liver studies, and steatotic animal livers are shown to provide reasonable estimates of the volume fraction of fat.