About seller
The aim of the study is to evaluate the effectiveness of high-intensity laser therapy (HILT) in the short and long term in the treatment of patients with the myogenic temporomandibular joint disorder(TMD). This prospective, double-blind, controlled clinical study was conducted on patients with myogenic TMD at a university's oral and maxillofacial surgery clinic. Seventy-six patients were randomized into two groups (HILT, and control group), including 38 patients in one group. The patients were evaluated for pain, the range of motion of the jaw, disability, and quality of life. ALK inhibitor Assessments were performed before therapy (week 0) and after therapy (weeks 4 and 12). Data were evaluated using SPSS-20 and the level of significance was set at p <0.05. There was no significant difference between the groups in terms of socio-demographic characteristics of the groups at the beginning of the study. In the 4th week, the VAS pain score was significantly decreased in the HILT group (47%) compared to the placebo HILT group (4%) (p <0.001). The maximum mouth opening was significantly increased in the HILT group (27%) compared to the placebo HILT group (4%) at week 12 (p <0.001). The HILT group showed a significant improvement in Jaw Functional Limitation Scale 20 (JFLS-20) and Oral Health Impact Profile (OHIP-14) compared to the placebo HILT group (p <0.001 and p <0.005 respectively). As a result of the study, it was concluded that HILT is a highly effective, non-invasive therapeutic method for patients with myogenic TMD.As a result of the study, it was concluded that HILT is a highly effective, non-invasive therapeutic method for patients with myogenic TMD.Oxindole has been shown to be a pharmacologically advantageous scaffold having many biological properties that are relevant to medicinal chemistry. The simplicity and widespread occurrence of this scaffold in plant-based alkaloids have further reinforced oxindole's merit in the domain of novel drug discovery. First extracted from Uncaria tomentosa, commonly the known as cat claw's plant which was found abundantly in the Amazon rainforest, molecules with the oxindole moiety have been shown to be common in a wide variety of compounds extracted from plant sources. The role of oxindole as a chemical scaffold for fabricating and designing biological drugs agents can be ascribed to its ability to be modified by a number of chemical groups to generate novel biological functions. This review is aimed at providing a description of the general chemistry based on existing corresponding structure-activity relationships (SARs) and compile all recent developmentary studies on oxindole-derived compounds as a successful pharmaceutical agent. A substantial group of oxindole derivatives are chiefly being tested as anticancer agents, however, a several oxindole derivatives have been shown to possesses antimicrobial, α-glucosidase inhibitory, antiviral, antileishmanial, antitubercular, antioxidative, tyrosinase inhibitory, PAK4 inhibitory, antirheumatoid arthritis and intraocular pressure reducing activities, to name a few. In this review we show the potential value of developing newer oxindole derivatives with an improved range of pharmacological implications as well as identifying drugs possessing oxindole core, that are showing and serving increased efficacy in clinical practice.If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9 the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.Tranilast (TRN) or (N-3,4 -dimethoxy cinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite and is identified mainly as an anti-allergic agent with limited side effects. The anti-cancer effects of tranilast either alone or in combination with chemotherapeutic drugs have been evidenced in several pre-clinical studies. The main mechanism of action of tranilast includes targeting and modulation of various signaling and immune regulatory pathways including Transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol 3-kinase (PI3K), MAP-Kinase (MAPK), Protein kinase B (Akt/PKB), c-Jun N-terminal kinase, modulation of cancer stem cells, etc. Most of these pathways are involved in tumor proliferation, invasion, and metastasis and it is postulated that tranilast, with its low toxicity profile and high anti-carcinogenic abilities, can serve as a potential anti-tumorigenic agent. The main aim of this review is to provide updated information on the anti-cancer effects of tranilast and its significance as a therapeutic agent.Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.