throneview2
throneview2
0 active listings
Last online 6 months ago
Registered for 6+ months
Aba South, Bauchi, Nigeria
513777Show Number
Send message All seller items (0) www.selleckchem.com/products/Monensin-sodium-salt(Coban).html
About seller
When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models.The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.Pulmonary arterial hypertension (PAH) is a rare, life-threatening condition characterized by dysregulated metabolism, pulmonary vascular remodeling, and loss of pulmonary vascular cross-sectional area due to a variety of etiologies. Right ventricular (RV) dysfunction in PAH is a critical mediator of both long-term morbidity and mortality. While combinatory oral pharmacotherapy and/or intravenous prostacyclin aimed at decreasing pulmonary vascular resistance (PVR) have improved clinical outcomes, there are currently no treatments that directly address RV failure in PAH. This is, in part, due to the incomplete understanding of the pathogenesis of RV dysfunction in PAH. The purpose of this review is to discuss the current understanding of key molecular mechanisms that cause, contribute and/or sustain RV dysfunction, with a special focus on pathways that either have led to or have the potential to lead to clinical therapeutic intervention. Specifically, this review discusses the mechanisms by which vessel loss and dysfunctional angiogenesis, sex hormones, and metabolic derangements in PAH directly contribute to RV dysfunction. Finally, this review discusses limitations and future areas of investigation that may lead to novel understanding and therapeutic interventions for RV dysfunction in PAH.Intracoronary near-infrared spectroscopy (NIRS) has been developed and validated for the detection of lipid-rich plaque in the coronary arteries. A combined NIRS and intravascular ultrasound catheter is currently in clinical use and has an emerging role in evaluating plaques both before and after percutaneous coronary intervention. NIRS has recently been shown to positively identify both vulnerable patients and vulnerable plaques. This review focuses on the principles and image interpretation of intracoronary NIRS, as well as its clinical applications, limitations, and future directions.Atherosclerotic cardiovascular disease is a key public health concern worldwide and leading cause of morbidity, mortality and health economic costs. Understanding atherosclerotic plaque microstructure in relation to molecular mechanisms that underpin its initiation and progression is needed to provide the best chance of combating this disease. Evolving vessel wall-based, endovascular coronary imaging modalities, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and near-infrared spectroscopy (NIRS), used in isolation or as hybrid modalities, have been advanced to allow comprehensive visualization of the pathological substrate of coronary atherosclerosis and accurately measure temporal changes in both the vessel wall and plaque characteristics. This has helped further our appreciation of the natural history of coronary artery disease (CAD) and the risk for major adverse cardiovascular events (MACE), evaluate the responsiveness to conventional and experimental therapeutic interventions, and assist in guiding percutaneous coronary intervention (PCI). Here we review the use of different imaging modalities for these purposes and the lessons they have provided thus far.In vivo imaging of plaque instability has been considered to have a great potential to predict future coronary events and evaluate the stabilization effect of novel anti-atherosclerotic medical therapies. Currently, there are several intravascular imaging modalities which enable to visualize plaque components associated with its vulnerability. selleck products These include virtual histology intravascular ultrasound (VH-IVUS), integrated backscatter IVUS (IB-IVUS), optical coherence tomography (OCT), near-infrared spectroscopy and coronary angioscopy. Recent studies have shown that these tools are applicable for risk stratification of cardiovascular events as well as drug efficacy assessment. However, several limitation exists in each modality. The current review paper will outline advantages and limitation of VH-IVUS, IB-IVUS, OCT, NIRS and coronary angioscopy imaging.

throneview2's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register