swamppuffin7
swamppuffin7
0 active listings
Last online 4 months ago
Registered for 4+ months
Bende, Borno, Nigeria
606341Show Number
Send message All seller items (0) www.selleckchem.com/products/loxo-195.html
About seller
Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.Objective To describe clinical, biochemical, and molecular genetic findings in a large inbred family in which 4 children with a severe early-onset epileptic-dyskinetic encephalopathy, with suppression burst EEG, harbored homozygous mutations of phosphatidylinositol glycan anchor biosynthesis, class P (PIGP), a member of the large glycosylphosphatidylinositol (GPI) anchor biosynthesis gene family. Methods We studied clinical features, EEG, brain MRI scans, whole-exome sequencing (WES), and measured the expression of a subset of GPI-anchored proteins (GPI-APs) in circulating granulocytes using flow cytometry. Results The 4 affected children exhibited a severe neurodevelopmental disorder featuring severe hypotonia with early dyskinesia progressing to quadriplegia, associated with infantile spasms, focal, tonic, and tonic-clonic seizures and a burst suppression EEG pattern. Two of the children died prematurely between age 2 and 12 years; the remaining 2 children are aged 2 years 7 months and 7 years 4 months. The homozygous c.384del variant of PIGP, present in the 4 patients, introduces a frame shift 6 codons before the expected stop signal and is predicted to result in the synthesis of a protein longer than the wild type, with impaired functionality. We demonstrated a reduced expression of the GPI-AP CD16 in the granulocytic membrane in affected individuals. Conclusions PIGP mutations are consistently associated with an epileptic-dyskinetic encephalopathy with the features of early infantile epileptic encephalopathy with profound disability and premature death. CD16 is a valuable marker to support a genetic diagnosis of inherited GPI deficiencies. Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.Objective To investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity. Methods We performed a hypothesis-based search into the presence of variants in fused in sarcoma (FUS), transactive response DNA-binding protein 43 (TDP-43), plastin 3 (PLS3), and profilin 2 (PFN2) in a cohort of 153 patients with SMA types 1-4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood. Results We identified 2 exonic variants in FUS exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in PLS3 in 33 patients. Five PLS3 variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in PFN2 and TDP-43 with no correlation with clinical phenotype or effects on splicing. Conclusions PLS3 and FUS sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity. Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.Objective To describe the case of an African patient who was diagnosed with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Methods Case report and literature review. Results We present a 39-year-old Gabonese man who developed progressive gait difficulty at the age of 32, followed by insidious tetraparesis, urinary sphincter disturbance, spastic dysarthria, cognitive dysfunction, and seizures. Brain imaging was performed many years after disease onset and revealed diffuse confluent white matter lesions and lacunar infarcts. He tested negative for acquired white matter disease, but genetic screening detected a genetic variant of HTRA1 gene (G283R), which has not been previously reported. Conclusions CARASIL is a disease that usually affects Asian patients. This case report describes a unique case of an African patient diagnosed with CARASIL and a novel genetic mutation in HTRA1 that has not been previously described in the literature. Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.Objective To describe the clinical and functional consequences of 1 novel and 1 previously reported truncating MT-ATP6 mutation. Methods Three unrelated probands with mitochondrial encephalomyopathy harboring truncating MT-ATP6 mutations are reported. Transmitochondrial cybrid cell studies were used to confirm pathogenicity of 1 novel variant, and the effects of all 3 mutations on ATPase 6 and complex V structure and function were investigated. Results Patient 1 presented with adult-onset cerebellar ataxia, chronic kidney disease, and diabetes, whereas patient 2 had myoclonic epilepsy and cerebellar ataxia; both harbored the novel m.8782G>A; p.(Gly86*) mutation. Patient 3 exhibited cognitive decline, with posterior white matter abnormalities on brain MRI, and severely impaired renal function requiring transplantation. The m.8618dup; p.(Thr33Hisfs*32) mutation, previously associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa, was identified. All 3 probands demonstrated a broad range of heteroplasmy across different tissue types. Blue-native gel electrophoresis of cultured fibroblasts and skeletal muscle tissue confirmed multiple bands, suggestive of impaired complex V assembly. Microscale oxygraphy showed reduced basal respiration and adenosine triphosphate synthesis, while reactive oxygen species generation was increased. Transmitochondrial cybrid cell lines studies confirmed the deleterious effects of the novel m.8782 G>A; p.(Gly86*) mutation. Conclusions We expand the clinical and molecular spectrum of MT-ATP6-related mitochondrial disorders to include leukodystrophy, renal disease, and myoclonic epilepsy with cerebellar ataxia. Truncating MT-ATP6 mutations may exhibit highly variable mutant levels across different tissue types, an important consideration during genetic counseling. Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. see more on behalf of the American Academy of Neurology.

swamppuffin7's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register