spleenshield02
spleenshield02
0 active listings
Last online 4 months ago
Registered for 4+ months
Isiala ngwa North, Cross River, Nigeria
513777Show Number
Send message All seller items (0) www.selleckchem.com/products/Camptothecine.html
About seller
Integrins are key players in platelet adhesion and aggregation. ADC Cytotoxin inhibitor Integrin molecular tensions, the forces transmitted by integrin molecules, are regulated by both mechanical and biochemical cues, and the outside-in and inside-out signaling has been extensively studied. While the mechanical properties of platelets at static status have been studied by atomic force microscopy, traction force microscopy and tension sensors, the biomechanical properties of flowing platelets remain elusive. Herein, we report microfluidic chips grafted with integrin tension sensors for microfluidic-force mapping in platelets. Specifically, the process of integrin αIIbβ3 mediating tension transmission and platelet adhesion under low flow rates has been obtained, and the process of platelet clustering at post-stenotic regions has been demonstrated. We found that flowing shear force can postpone the integrin-mediated tension transmission and platelet adhesion. We further evaluated the effect of Y-27632, a ROCK inhibitor that has been proven to reduce integrin-mediated platelet adhesion, at a series of concentrations and demonstrated that microfluidic chips with integrin tension sensors are sensitive to the concentration-dependent effects of Y-27632. Given their low cost and scalable throughput, these chips are ideal technical platforms for biological studies of platelets at flowing status and for platelet inhibitor or potential antiplatelet drug screening.A new transmetallation approach is described for the synthesis of metal oxide nanocrystals (NCs). Typically, the synthesis of metal oxide NCs in oleyl alcohol is driven by metal-based esterification catalysis with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+-OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+, or In3+) results in efficient synthesis of Cu2O NCs and exhibits size/morphology control based on the nature of M3+. Using a continuous-injection procedure where the copper precursor (Cu2+-oleate) and catalyst (M3+-oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+-OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+-OH monomers required for Cu2O condensation. Ga3+ is found to be the "goldilocks" catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+-OH and Cu+-oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate hydroxide ligands.A visible-light-induced synthesis of 3,3-dichloro-2-hydroxy-piperidines via site-selective functionalizations of C(sp3)-H in N-substituted piperidines using easily available N-chlorosuccinimide as chlorine source was developed. Mechanistic investigations suggest that chlorine radical is involved in this transformation.The magnetic properties of a series of organometallic complexes [LnCp3]- and Ln(CNT)2, where Cp = cyclopentadienyl and CNT = cyclononatetraenyl, of the lanthanide ions in the 2+ oxidation state, are theoretically studied in terms of the electronic structure obtained via multiconfigurational wave function-based methods. Calculations are performed for two groups of ion complexes selected based on their preferred electronic configuration 4fn+1 or 4fn5d1 (n is the number of f electrons in the 3+ ion). All the properties are discussed in terms of the electron density distribution of the ground state and ligand field effects. This analysis allows giving some molecular design strategies relevant to exploit the magnetic properties in applications like Single-Molecule Magnets (SMMs) for lanthanide ions in the 2+ oxidation state.A new acentric borate-nitrate Cs3B8O13(NO3) was synthesized by a molten salt method which consists of interpenetrating porous 3D covalent [B8O13]∞ and ionic [(NO3)Cs3]∞ lattices. It shows low ultraviolet cut-off edge (202 nm) and phase-matching second harmonic generation (SHG) intensity (0.7 KDP @1064 nm). First principles calculations showed that the main source of SHG is the cooperation of the B-O and [NO3]- groups.In this work, a honeycomb-shaped meso@mesoporous carbon nanofiber material incorporating homogeneously dispersed ultra-fine Fe2O3 nanoparticles (denoted as Fe2O3@g-C3N4@H-MMCN) is synthesised through a pyrolysis process. The honeycomb-shaped configuration of the meso@mesoporous carbon nanofiber material derived from a natural bio-carbon source (crab shell) acts as a support for an anode material for Li-ion batteries. Graphitic carbon nitride (g-C3N4) is produced via the one-step pyrolysis of urea at high temperature under an N2 atmosphere without the assistance of additives. The resulting favorable electrochemical performance, with superior rate capabilities (1067 mA h g-1 at 1000 mA g-1), a remarkable specific capacity (1510 mA h g-1 at 100 mA g-1), and steady cycling performance (782.9 mA h g-1 after 500 cycles at 2000 mA g-1), benefitted from the advantages of both the host material and the Fe2O3 nanoparticles, which play an important role due to their ultra-fine particle size of 5 nm. The excellent cycle life and high capacity demonstrate that this strategy of strong synergistic effects represents a new pathway for pursuing high-electrochemical-performance materials for lithium-ion batteries.RNA interference (RNAi) technology has great potential in cancer therapy, e.g., small interfering RNA (siRNA) can be exploited to silence specific oncogenes related to tumor growth and progression. However, it is critical to achieve high transfection efficiency while reducing cytotoxicity. In this paper, we report an siRNA delivery strategy targeting the oncogene KRAS based on arginine-modified poly(disulfide amine)/siRNA nanocomplexes. The poly(disulfide amine) is synthesized via aza-Michael polyaddition followed by the introduction of arginine groups onto its backbone to afford poly((N,N'-bis(acryloyl)cystamine-co-ethylenediamine)-g-Nω-p-tosyl-l-arginine) (PBR) polycations. Thus multiple interactions including electrostatic interaction, hydrogen bonding and a hydrophobic effect are introduced simultaneously between PBR and siRNA or cell membranes to improve transfection efficiency. By optimizing the grafting density of arginine groups, PBR/siRNA nanocomplexes achieve high cellular uptake efficiency, successful endosomal/lysosomal escape, and rapid biodegradation in the presence of high GSH concentration in the cytoplasm, and finally release siRNA to activate the RNAi mechanism.

spleenshield02's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register