About seller
Thus, all GuNAs (GuNA-T, -A, -G, and -mC) are now available to be examined in therapeutic applications.We describe a divergent and enantioselective total synthesis of (+)-ieodomycin A and (+)-ieodomycin B with three stereoisomers. The main advantage of the present synthesis is the late-stage elaboration of the side chain, which would afford a wide range of structurally diverse analogs with interesting bioactivities.A mild, chemoselective and sustainable biocatalysed synthesis of sulfoxides has been developed exploiting CALB and using AcOEt with a dual role of more environmentally friendly reaction solvent and enzyme substrate. A series of sulfoxides, including the drug omeprazole, have been synthesised in high yields and with excellent E-factors.Strong coupling systems enable coherent energy exchange between a light field and material electrons in nanoscale space. Active manipulation of this phenomenon by external stimuli is crucial for the design of advanced optoelectronic devices. Two neglected points severely hinder the improvement of tuning accuracy irreversible variation in cavity morphology and lack of control over the dielectric environment which may change during the coupling process. Here we present a chemical fine-tuning of the strong plasmon-exciton coupling process in tailored Au@Ag nanocavities. The silver shell thickness was carefully controlled to tune the plasmon resonance wavelength with an accuracy of ∼8 nm and facilitate hot spots at the edges to boost the plasmon-exciton coupling strength. Hybrid polariton states were further regulated across the zero-detuning point with a spectral accuracy of less than 1 nm via tuning the solvent refractive index, and a Rabi splitting as large as 194 meV was observed at room temperature. The fine-tuning of strong plasmon-exciton coupling by an adjacent dielectric environment provides a novel route to manipulate excitons in molecules and possesses great potential for chemical or biological sensing.Semiconductor quantum dots (QDs) are bright fluorophores that have significant utility for imaging and sensing applications. Core QDs are often employed in chemosensing via redox processes that modulates their fluorescence in the presence of an analyte. However, such particles lack robust surface passivation and generally contain a sizable portion of nonfluorescent QDs, which is detrimental to the detection limit. We investigated an approach to "turn on" non-fluorescent core QDs by lightly overcoating them with a thin shell of a higher bandgap semiconductor. The shell augments the population of sensing chromophores and increases the emission lifetime; however, it simultaneously mollifies redox processes that are responsible for analyte sensitivity to begin with. This balancing act was successfully applied to enhance the sensitivity of CdZnS/ZnS QDs towards 2,4,6-trinitrotoluene (TNT). Unexpectedly, it was found that CdZnS/ZnS QDs with very thick shells retained substantial sensitivity to TNT. see more This observation may be due to close coupling of the reduced substrate with the QD hole that is enabled by the near-degeneracy of holes in the core CdZnS and ZnS shell. The ability of core/shell QDs to retain substantial reducing power may have implications for other applications that can benefit from the enhanced stability of robust core/shell nanomaterials.Surface defects play a significant role in the nucleation and growth of metal particles. Site-selective nucleation of metal catalyst particles, and the subsequent growth of nanostructures, could thus be accomplished by defect engineering. This paper demonstrates the switching of growth sites of vertically aligned multiwall carbon nanotubes (MW-CNTs) by manipulation of surface passivation of the substrate and discusses the possible mechanism behind this selectivity. A complementary growth pattern of CNTs is observed for pre-treatment of identically patterned SiO2/Si substrates under a reducing and non-reducing atmosphere. Variation in the number density of oxygen vacancies on the silicon dioxide surface and the presence of native oxide on the silicon face are believed to dictate the observed selectivity. The CNT architectures mimic the substrate pattern meticulously, exhibiting sharp edges, illustrating a high degree of site selectivity. The chemical state of the substrate surface and catalyst particles has been studied using Auger electron spectroscopy. Electron microscopy and Raman spectroscopy were employed to characterize the synthesized CNTs. The Hermans orientation factor was calculated to quantify the degree of alignment of the MWCNTs. Such facile control over the growth site of aligned carbon nanotubes on a substrate is a desirable aspect of synthesis for easy integration with existing silicon fabrication technology.In this work, we have synthesized two new [C, C] cyclometalated Ir(iii)-NHC complexes, [IrCp*(C∧CNHC)Br](1a,b), [Cp* = pentamethylcyclopentadienyl; NHC = (2-flurobenzyl)-1-(4-methoxyphenyl)-1H-imidazoline-2-ylidene (a); (2-flurobenzyl)-1-(4-formylphenyl)-1H-imidazoline-2-ylidene (b)] via intramolecular C-H bond activation. The molecular structure of complex 1a was determined by X-ray single crystal analysis. The catalytic potentials of the complexes were explored for acceptorless dehydrogenation of alcohols to carboxylic acids with concomitant hydrogen gas evolution. Under similar experimental conditions, complex 1a was found to be slightly more efficient than complex 1b. Using 0.1 mol% of complex 1a, good-to-excellent yields of carboxylic acids/carboxylates have been obtained for a wide range of alcohols, both aliphatic and aromatic, including those involving heterocycles, in a short reaction time with a low loading of catalyst. Remarkably, our method can produce benzoic acid from benzyl alcohol on a gram scale with a catalyst-to-substrate ratio as low as 1 5000 and exhibit a TON of 4550. Furthermore, the catalyst could be recycled at least three times without losing its activity. A mechanism has been proposed based on controlled experiments and in situ NMR study.In contrast to previous work, the synergy between panchromatic absorption and molecular singlet fission (SF) is exploited to optimize solar energy conversion through evaluation of the distance dependence of intramolecular Förster Resonance Energy Transfer (i-FRET) in a series of subphthalocyanines (SubPcs) linked to pentacene dimers (Pnc2s). To provide control over i-FRET, the molecular spacer rather than the energy donating SubPc is tailored in the corresponding SubPc-Pnc2 conjugates in terms of length (i.e., the number of aryl units) and flexibility (i.e., presence or absence of a CH2 group). AM1-CIS calculations support the experiments, which underline the importance of the molecular spacer to impact not only the i-FRET dynamics, but also the dynamics of intramolecular singlet fission (i-SF). For example, an additional phenyl group slows down both i-FRET and i-SF by a factor of ∼3.8 and ∼1.6, respectively, by a quinone-like conjugation pattern that affords a pentacene acceptor orbital that is fairly delocalized over both pentacenes and the bridging phenyl.