About seller
Such results could also be verified by the other three biochar (Oxi-R550, H-R550, and R800). The results of the present study shed light on the mechanism of biochar mediated sulfite activation process by Cr(VI) and also assured the viability and green approach of the technique in detoxifying the industrial effluents containing Cr(VI) and organic pollutants.Photochemical methods attracted much research interests for their high-efficiency and low secondary pollution. Decomposition of synthetic pyrethroids, the fourth major group of insecticides in use worldwide, was also of great significance due to their possible environmental risks. The photodegradation of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids in methanol/acetone = 9/1 (by volume) by a 400 W mercury lamp was examined. The t1/2 of tested pyrethroids was less than 25 min, except for cis-permethrin with a t1/2 of up to 50 min. The trans-isomer of permethrin and compound DCA-01 with a smaller t1/2 might be more susceptible to degradation than their cis-isomer. Besides, the photodegradation of pyrethroids was divided into twelve pathways including isomerization, ester hydrolysis, ester bond cleavage, CO bond cleavage, 3,3-dimethylacrylate formation, double bond break, C1-C3 bond cleavage in cyclopropyl, reductive dehalogenation, decarboxylation, nucleophilic reagents attack on lone pair electrons on oxygen atoms in the phenyl ether, cyano hydrolysis, and halogenated hydrocarbon hydrolysis. The ECOSAR program displayed that pyrethroids and most of their photodegradation products were toxic to fish, daphnid, green algae. Particularly, some photodegradation products were more harmful to aquatic organisms than their parents.NH3, SO2, NOx and the inorganic ions of PM2.5 in winter 2009, 2014 and 2016 were examined to investigate the change in NH3 and aerosol chemistry in Beijing, China. NH3 concentrations showed an increase by 59% on average, in contrast to the decrease of SO2 by 63% from winter 2009 to 2016. The mean mass ratio of NH3/NHx was 0.83 ± 0.12 in 2016, which is higher than those obtained in 2009 and 2014, implying more NHx remaining as free NH3 in 2016 winter. Our findings suggest that vehicles exhaust emissions are an important NH3 source in urban central atmosphere of Beijing in winter. Despite the observed NOx presenting declining trends from 2014 to 2016, nitrate concentrations even exhibited a significant increasing trend, which may be largely attributable to high NH3 levels. An in-depth analysis of measured NH3 and aerosol species in a heavy pollution episode in December 2016, combined with the acidity predicted by ISORROPIA II model demonstrated abundant NH3 most of the time in air, where NH3 is not only a precursor for NH4+ but also effect the neutralization of SO42- and NO3- in PM2.5. With high RH and low photochemical activity, elevated NO3- concentration was attributed to an enhanced heterogeneous conversion of NOx to HNO3 to form NH4NO3 in pollution transport stage. The decrease in NOx from high level and the increase in NH3, with peaks of SO42- occurring were observed in pollution cumulative stage. The aqueous-phase oxidation of SO2 by NO2 to sulfate might play an important role with high pH values. Our results suggested that the simultaneous control of NH3 emissions in conjunction with SO2 and NOx emissions would be more effective in reducing particulate matter PM2.5 formation.Wastewater contaminated with high concentrations of selenium oxyanions requires treatment prior to discharge. Biological fluidized bed reactors (FBRs) can be an option for removing selenium oxyanions from wastewater by converting them into elemental selenium, which can be separated from the treated effluent. In this study, a lab-scale FBR was constructed with granular activated carbon as biofilm carrier and inoculated with a consortium of selenate reducing bacteria enriched from environmental samples. The FBR was loaded with an influent containing ethanol (10 mM) and selenate (10 mM) as the microbial electron donor and acceptor, respectively. The performance of the FBR in reducing selenate was evaluated under various hydraulic retention times (HRTs) (120 h, 72 h, 48 h, 24 h, 12 h, 6 h, 3 h, 1 h and 20 min). After process acclimatization, selenate was completely removed with no notable selenite produced when the HRT was stepwise decreased from 120 h to 6 h. However, decreasing the HRT to 3 h resulted in selenite accumulation (0.17 ± 0.023 mM) in the effluent although selenate removal efficiency remained at 99.8 ± 0.20%. At 1 h HRT, the FBR removed 90.8 ± 1.4% of the selenate at a rate of 9.6 ± 0.15 mM h-1, which is the highest selenate reduction rate reported in the literature so far. However, 1 h HRT resulted in notable selenite accumulation (up to 2.4 ± 0.27 mM). Further decreasing the HRT to 20 min resulted in a notable decline in selenate reduction. Selenate reduction recovered from the "shock loading" after the HRT was increased back to 3 h. GSK484 However, selenite still accumulated until the FBR was operated in batch mode for 6 days. This study affirmed that FBR is a promising treatment option for selenate-rich wastewater, and the process can be efficiently operated at low HRTs.Increasing fossil fuel consumption and global warming has been driving the worldwide revolution towards renewable energy. Biomass is abundant and low-cost resource whereas it requires environmentally friendly and cost-effective conversion technique. Pyrolysis of biomass into valuable bio-oil has attracted much attention in the past decades due to its feasibility and huge commercial outlook. However, the complex chemical compositions and high water content in bio-oil greatly hinder the large-scale application and commercialization. Therefore, catalytic pyrolysis of biomass for selective production of specific chemicals will stand out as a unique pathway. This review aims to improve the understanding for the process by illustrating the chemistry of non-catalytic and catalytic pyrolysis of biomass at the temperatures ranging from 400 to 650 °C. The focus is to introduce recent progress about producing value-added hydrocarbons, phenols, anhydrosugars, and nitrogen-containing compounds from catalytic pyrolysis of biomass over zeolites, metal oxides, etc.