About seller
92 ± 3.73 and 5.35 ± 4.62 points, respectively. Also, 80% participants (7 with moderate-mild impairment, 1 with severe impairment) achieved minimal clinically important difference (MCID FMA-UE >5.2 or ARAT >5.7) during the course of the study. Kinematic measures indicate that, on average, participants' movements became faster and smoother. Moreover, modulations in movement related cortical potentials, an EEG-based neural correlate measured contralateral to the impaired arm, were significantly correlated with ARAT scores (ρ = 0.72, p less then 0.05) and marginally correlated with FMA-UE (ρ = 0.63, p = 0.051). This suggests higher activation of ipsi-lesional hemisphere post-intervention or inhibition of competing contra-lesional hemisphere, which may be evidence of neuroplasticity and cortical reorganization following BMI mediated rehabilitation therapy.Autism spectrum disorder (ASD) is characterized by deficits in social interactions, impairments in language and communication, and highly restricted behavioral interests. Transcranial direct current stimulation (tDCS) is a widely used form of noninvasive stimulation and may have therapeutic potential for ASD. So far, despite the widespread use of this technique in the neuroscience field, its effects on network-level neural activity and the underlying mechanisms of any effects are still unclear. In the present study, we used electroencephalography (EEG) to investigate tDCS induced brain network changes in children with ASD before and after active and sham stimulation. We recorded 5 min of resting state EEG before and after a single session of tDCS (of approximately 20 min) over dorsolateral prefrontal cortex (DLPFC). Two network-based methods were applied to investigate tDCS modulation on brain networks 1) temporal network dynamics were analyzed by comparing "flexibility" changes before vs after stimulation, and 2) frequency specific network changes were identified using non-negative matrix factorization (NMF). We found 1) an increase in network flexibility following tDCS (rapid network configuration of dynamic network communities), 2) specific increase in interhemispheric connectivity within the alpha frequency band following tDCS. Together, these results demonstrate that tDCS could help modify both local and global brain network dynamics, and highlight stimulation-induced differences in the manifestation of network reconfiguration. Meanwhile, frequency-specific subnetworks, as a way to index local and global information processing, highlight the core modulatory effects of tDCS on the modular architecture of the functional connectivity patterns within higher frequency bands.Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at https//github.com/omarallouz/JCnet.Previous MRI studies consistently reported iron accumulation within the striatum of patients with Huntington's disease (HD). However, the pattern and origin of iron accumulation is poorly understood. This study aimed to characterize the histopathological correlates of iron-sensitive ex vivo MRI contrast change in HD brains. see more To this end, T2*-weighted 7T MRI was performed on postmortem tissue of the striatum of three control subjects and 10 HD patients followed by histological examination. In addition, formalin-fixed paraffin-embedded material of three control subjects and 14 HD patients was selected for only histology to identify the cellular localization of iron using stainings for iron, myelin, microglia and astrocytes. As expected HD striata showed prominent atrophy. Compared to controls, the striatum of HD patients was in general more hypointense on T2*-weighted high-field MRI and showed a more intense histopathological staining for iron. In addition, T2*-weighted MRI identified large focal hypointensities within the striatum of HD patients. Upon histological examination, these large focal hypointensities frequently colocalized with enlarged perivascular spaces and iron was found within the vessel wall and reactive astrocytes. In conclusion, we show that the striatum of HD patients has a distinctive phenotype on T2*-weighted MRI compared to control subjects. On ex vivo MRI, these contrast changes are heavily biased by enlarged perivascular spaces from which it is currently unknown whether this is a fixation artefact or a disease specific observation. Clinically, the observation of iron within reactive astrocytes is of importance for the interpretation and understanding of the potential underlying mechanisms of T2*-weighted MRI results in HD patients.