shelftimer41
shelftimer41
0 active listings
Last online 4 months ago
Registered for 4+ months
Ohafia, Sokoto, Nigeria
513631Show Number
Send message All seller items (0) www.selleckchem.com/products/k03861.html
About seller
Routine collaboration between ePCT researchers and health systems stakeholders throughout the trial can help ensure research and QI are optimally aligned to support high-quality patient-centered care.As per recent reports, there is an association between glucocerebrosidase (Gcase) enzyme and Parkinson's disease (PD). In addition, certain mutations in the Gcase gene (GBA) and the progranulin (PGRN) gene are found to be linked with the imbalance in the levels of Gcase enzyme. This imbalance or decrease or impairment in Gcase activity can lead to Gaucher disease, frontotemporal lobar degeneration (FTLD), dementia, etc. Recent evidences suggest that the drugs used to treat these diseases can be used for PD. The present review has focused on the therapeutic approaches used for diseases linked with Gcase enzyme, which can be used for PD. The review also considered possible target specific novel strategies, which may help to meet the unmet needs in the treatment of PD.Epidermolysis bullosa represents a monogenetic disease comprising a variety of heterogeneous mutations in at least 16 genes encoding structural proteins crucial for skin integrity. Due to well-defined mutations but still lacking causal treatment options for the disease, epidermolysis bullosa represents an ideal candidate for gene therapeutic interventions. selleck compound Recent developments and improvements in the genome editing field have paved the way for the translation of various gene repair strategies into the clinic. With the ability to accurately predict and monitor targeting events within the human genome, the translation might soon be possible. Here, we describe current advancements in the genome editing field for epidermolysis bullosa, along with a discussion of aspects and strategies for precise and personalized gene editing-based medicine, in order to develop efficient and safe ex vivo as well as in vivo genome editing therapies for epidermolysis bullosa patients in the future.From the beginning of the genome sequencing era, it has become increasingly evident that genetics plays a role in all diseases, of which only a minority are single-gene disorders, the most common target of current gene therapies. However, the majority of people have some kind of health problems resulting from congenital genetic mutations (over 6000 diseases have been associated to genes, https//www.omim.org/statistics/geneMap) and most genetic disorders are rare and only incompletely understood. The vision and techniques applied to the synthesis of genomes may help to address unmet medical needs from a chromosome and genome-scale perspective. In this chapter, we address the potential therapy of genetic diseases from a different outlook, in which we no longer focus on small gene corrections but on higher-order tools for genome manipulation. These will play a crucial role in the next years, as they prelude to a much deeper understanding of the architecture of the human genome and a more accurate modeling of human diseases, offering new therapeutic opportunities.Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage.

shelftimer41's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register