About seller
These nonstationary features imply that the default stationary assumption is not applicable in ARB. Further, the reconstructed streamflow shows statistically significant oscillations at interannual, interdecadal and multidecadal time scales and are teleconnected to climate patterns such as El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO). A composite analysis shows that La Niña (El Niño), cold (warm) PDO, and cold (warm) AMO events are typically associated with increased (decreased) streamflow anomalies of ARB. The reconstructed streamflow data provides us the full range of streamflow variability and recurrence characteristics of extremes spanned over five centuries from which it is useful for us to evaluate and manage the current water systems of ARB more effectively and a better risk analysis of future droughts of ARB.In this review, we present the state of art regarding rhizosphere effects on eucalypt plantations. It provides a greater understanding of carbon (C) and nitrogen (N) turnover in forest soils. P organic hydrolysis, soil mineral solubilization, indoleacetic acid, gibberellin, resistance factors, and production of siderophores by rhizosphere microbial populations help to explain the tolerance of Eucalyptus plants to biotic and abiotic stresses and the apparent steady-state condition of C and N soil stocks in many planted forests. This work aims to present the main findings on Eucalyptus rhizosphere processes and highlights their importance for trees nutrition, especially for N mineralization triggered by microbial activation or microbial community structure changes regarding the so-called rhizosphere priming effect and N fixation. Furthermore, we present an explanatory conceptual model of the steady-state condition for soil organic matter (SOM) stocks and its relation with fertilization based on a nutrient balance model. This review also considers the main experimental and modeling studies that demonstrate the quantitative importance of rhizosphere processes to Eucalyptus genus and their shortcomings. This provides a framework for process modeling under scenarios of global climate change. A better understanding of rhizosphere microbiological processes may allow improvements in Eucalyptus nutrition and production, as well as in accurate long-term estimates of SOM stocks and C-CO2 exchanges between forest soils and the atmosphere.Nowadays, several digestion protocols have been employed to extract microplastics from marine biota. However, the appropriate protocol and its optimal operating conditions to eliminate the clam Mactra veneriformis tissues have never been investigated. In this study, two synchronous phases were taken to select the compromise elimination protocol which was efficient in digesting biological materials with little effect on identification of the tested plastic polymers. Furthermore, the protocol from compromising results between two phases was optimized by an orthogonal experiment to determine the best operating conditions. Then, an application of the optimization protocol to investigate microplastics pollution in commercial clams was conducted. T-705 cell line According to our results, 10% KOH showed fairly well digestion efficiency and little effect on identification of the tested microplastics. Furthermore, best operating conditions were demonstrated as treating clam tissues with 15 (MV) of 10% KOH solution, incubating at 60 °C, shaking at 30 rpm for 12 h. In China, commercial clams were found contaminated with widespread microplastics pollution (3.50 ± 1.35 items/g). These problems should be further investigated and assessed due to the increased consumption as seafoods.The continuous release of pharmaceuticals from WWTP effluents to freshwater is a matter of concern, due to their potential effects on non-target organisms. The occurrence of pharmaceuticals in WWTPs and their associated hazard have been scarcely studied in Latin American countries. This study aimed at monitoring for the first time the occurrence of 70 pharmaceutical active compounds (PhACs) in WWTPs across Costa Rica; the application of the hazard quotient (HQ) approach coupled to ecotoxicological determinations permitted to identify the hazard posed by specific pharmaceuticals and toxicity of the effluents, respectively. Thirty-three PhACs were found, with 1,7-dimethylxanthine, caffeine, acetaminophen, ibuprofen, naproxen, ketoprofen and gemfibrozil being the most frequently detected (influents/effluents). HQ for specific pharmaceuticals revealed 24 compounds with high/medium hazard in influents, while the amount only decreased to 21 in effluents. The top HQ values were obtained for risperidone, lovastatin, iphenhydramine. Findings from this study provide novel information on the occurrence of pharmaceuticals and the performance of WWTPs in the tropical region of Central America.Wastewater is one of the major sources of micropollutant release into the environment. In order to reduce the impact of wastewater, wastewater treatment plants (WWTP) have been set up, in the instance of vertical flow constructed wetlands (VFCWs). Besides, micropollutants could represent a vast diversity of compounds and compound's choice could bias studies focused on their fate. To overcome this bias, non-targeted screening approaches can be performed. Therefore, the diffusion of micropollutants from raw wastewater in the VFCW compartments (wastewater, plants and sludge) as well as their fate have been investigated using this non-target approach with liquid chromatography (LC) coupled to high resolution mass spectrometry (HRMS) and gas chromatography (GC) coupled to mass spectrometry. To help the operators in their sludge management, this study will be focused on the following question Is there a specific distribution of micropollutants according to sludge layers? To eliminate the background contamination found both inside the CW and in the surrounding environment, a control coring was performed in bank. A specific distribution could be observed in the top (191 compounds) and bottom layers (38 compounds). However, a distribution over the whole depth for xenobiotics was observed. Micropollutants classes and the main microbial productivity were preferably found in the top layer. The micropollutants fate could however not be restricted to the sludge compartment. Therefore, the specific micropollutants distribution was analyzed in the outputs of the system in their interactions with wastewater (effluent, sludge, and reed rhizomes) to understand their fate. In our study, the results highlighted a consistent part of compounds found in at least two or three of these compartments, with a similar trend in each compartment. These results underline the interactions between the compartments and the global issues of micropollutants distribution as well as its wide spreading in the whole CW ecosystem.