savedaniel3
savedaniel3
0 active listings
Last online 3 months ago
Registered for 3+ months
Ukwa West, Katsina, Nigeria
614344Show Number
Send message All seller items (0) www.selleckchem.com/products/bms-911172.html
About seller
Zinc (Zn) alloys are promising alternatives to magnesium (Mg)- and iron (Fe)-based alloys because of their moderate corrosion rate and superior biocompatibility. To reduce the mass release of Zn2+ and improve the biocompatibility of Zn implants, the biomimetic zwitterionic polymer layer (phosphorylcholine chitosan-PCCs) was immobilized on the plasma-treated Zn1Mg surface. It is the chemical bonds between the -NH2 groups of the PCCs chain and O-C═O (C═O) groups on the plasma-treated Zn1Mg (Zn1Mg-PP) that contributes to the strong bonding strength between the film and the substrate, by which the PCCs (approx. 200 nm thick) layer can bear a 5.93 N normal load. The electrochemical impedance spectroscopy (EIS) results showed that the PCCs layer remarkably increased the resistance against corrosion attack, protecting substrates from over-quick degradation, and the protective effect of the layer with a thickness of 200 nm lasts for about 24 h. The corrosion products of Zn1Mg-PP-PCC in NaCl solution were determined as Zn5(OH)8Cl2·H2O and Zn3(PO4)2. Besides, the bulk Zn1Mg can trigger more aggressive macrophage activity, while the surface of Zn1Mg-PP and Zn1Mg-PP-PCC and their corrosion products (Zn3(PO4)2) tend to promote the differentiation of macrophages into the M2 phenotype, which is beneficial for implant applications.Affordable and automated cloning platforms are essential to many synthetic biology studies. However, the traditional E. coli-based cloning is a major bottleneck as it requires heat shock or electroporation implemented in the robotic workflows. To overcome this problem, we explored bacterial natural transformation for automatic DNA cloning and engineering. Recombinant plasmids are efficiently generated from Gibson or overlap extension PCR (OE-PCR) products by simply adding the DNA into Acinetobacter baylyi ADP1 cultures. No DNA purification, competence induction, or special equipment is required. Up to 10,000 colonies were obtained per microgram of DNA, while the number of false positive colonies was low. We cloned and engineered 21 biosynthetic gene clusters (BGCs) of various types, with length from 1.5 to 19 kb and GC content from 35% to 72%. One of them, a nucleoside BGC, showed antibacterial activity. Furthermore, the method was easily transferred to a low-cost benchtop robot with consistent cloning efficiency. Thus, this automatic natural transformation (ANT) cloning provides an easy, robust, and affordable platform for high throughput DNA engineering.Lanthanides such as cerium(III), europium(III), and gadolinium(III) are widely used for designing fluorescent probes or magnetic resonance imaging contrasting agents for biological systems. The synthesis and study of lanthanide complexes in buffer solutions imitating biological fluids are often complicated because of a lack of data on the lanthanide interactions with buffer solution components. BMS-911172 cost Therefore, Ln(III) [where Ln(III) = La(III), Ce(III), Gd(III), Eu(III)] complexation with a widely used buffer agent, tris(hydroxymethyl)aminomethane (Tris), in aqueous solution is studied using potentiometry, spectrofluorimetry, and 139La NMR spectroscopy. The stoichiometric composition of complexes is determined using mass spectrometry. The thermodynamic stability constants of Ln(III)-Tris complexes are calculated from potentiometric and spectral data; the difficulties in the study of these systems, reliability, and accuracy of the obtained constants are discussed. The possible structures of free Tris and its complexes with lanthanides(III) are optimized on the density functional theory/PBE0 level; the peculiarities of metal-ligand bonds were studied by Quantum Theory Atoms in Molecules analysis.Single-cell mass spectrometry (MS) remains challenging in the analysis of cells in the native environment due to the severe ion suspension from nonvolatile salts. Synchronous desalting and ionization would be ideal to both ensure the native environment and remove the salt interference. Here, a novel dual-spray ionization technique combining electrospray and nanoelectrospray ionization (ESI-nESI) was developed, enabling highly efficient online desalting during the ionization process. In situ detection of cell surface proteins from the intact cells in phosphate buffer saline (PBS) was achieved by dual ESI-nESI MS with the help of an MS-based immunoassay using rhodamine-based mass tags. These mass tags were confirmed to be highly competitive during desalting, which improved the protein detection sensitivity to a single-cell level. Through the combination of the single-cell immunoassay with ESI-nESI MS, the important surface protein markers, cancer antigen 125, in two cancer cell lines (OVCAR-3 and MCF-7) suspended in the PBS buffers were screened in a high-throughput cytometric mode, along with some proposed cellular endogenous lipids. The ESI-nESI MS system is promising for multidimensional organic mass cytometric analysis in the cellular native environment for clinical use and many basic biology researches.The bacterial ribosome is one of the most important targets in the treatment of infectious diseases. As antibiotic resistance in bacteria poses a growing threat, a significant amount of effort is concentrated on exploring new drug-binding sites where testable predictions are of significance. Here, we study the dynamics of a ribosomal complex and 67 small and large subunits of the ribosomal crystal structures (64 antibiotic-bound, 3 antibiotic-free) from Deinococcus radiodurans, Escherichia coli, Haloarcula marismortui, and Thermus thermophilus by the Gaussian network model. Interestingly, a network of nucleotides coupled in high-frequency fluctuations reveals known antibiotic-binding sites. These sites are seen to locate at the interface of dynamic domains that have an intrinsic dynamic capacity to interfere with functional globular motions. The nucleotides and the residues fluctuating in the fast and slow modes of motion thus have promise for plausible antibiotic-binding and allosteric sites that can alter antibiotic binding and resistance. Overall, the present analysis brings a new dynamic perspective to the long-discussed link between small-molecule binding and large conformational changes of the supramolecule.

savedaniel3's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register