About seller
Identifying ecologically significant phenotypic traits and the genomic mechanisms that underly them are crucial steps in understanding traits associated with population divergence. We used genome-wide data to identify genomic regions associated with key traits that distinguish two ecomorphs of rainbow trout (Oncorhynchus mykiss)-insectivores and piscivores-that coexist for the non-breeding portion of the year in Kootenay Lake, southeastern British Columbia. "Gerrards" are large-bodied, rapidly growing piscivores with high metabolic rates that spawn north of Kootenay Lake in the Lardeau River, in contrast to the insectivorous populations that are on average smaller in body size, with lower growth and metabolic rates, mainly forage on aquatic insects, and spawn in tributaries immediately surrounding Kootenay Lake. We used pool-seq data representing ~ 60% of the genome and 80 fish per population to assess the level of genomic divergence between ecomorphs and to identify and interrogate loci that may play functveal a high degree of genomic differentiation between piscivorous and insectivorous populations and indicate that the large body piscivorous phenotype is likely not due to one or a few loci of large effect. Rather, the piscivore phenotype may be controlled by several loci of small effect, thus highlighting the power of whole-genome resequencing in identifying genomic regions underlying population-level phenotypic divergences.Our results reveal a high degree of genomic differentiation between piscivorous and insectivorous populations and indicate that the large body piscivorous phenotype is likely not due to one or a few loci of large effect. Rather, the piscivore phenotype may be controlled by several loci of small effect, thus highlighting the power of whole-genome resequencing in identifying genomic regions underlying population-level phenotypic divergences. The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modulesribes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that - on the basis of an ancestral gill arch network-transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation. Sorghum grain mold is the most important disease of the crop. The disease results from simultaneous infection of the grain by multiple fungal species. Host responses to these fungi and the underlying molecular and cellular processes are poorly understood. To understand the genetic, molecular and biochemical components of grain mold resistance, transcriptome profiles of the developing grain of resistant and susceptible sorghum genotypes were studied. The developing kernels of grain mold resistant RTx2911 and susceptible RTx430 sorghum genotypes were inoculated with a mixture of fungal pathogens mimicking the species complexity of the disease under natural infestation. Global transcriptome changes corresponding to multiple molecular and cellular processes, and biological functions including defense, secondary metabolism, and flavonoid biosynthesis were observed with differential regulation in the two genotypes. Genes encoding pattern recognition receptors (PRRs), regulators of growth and defense homeostasisns that are potential targets for crop improvement. Graphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target. The problem is referred to as one-to-one subgraph search, and it is known to be NP-complete. click here Heuristics and indexing techniques can be applied to facilitate the search. Indexing techniques are also exploited in the context of searching in a collection of target graphs, referred to as one-to-many subgraph problem. Filter-and-verification methods that use indexing approaches provide a fast pruning of target graphs or parts of them that do not contain the query. The expensive verification phase is then performed only on the subset of promising targets. Indexing strategies extract graph features at a sufficient granularity level for performing a powerful filtering step. Features are memorized in data structures allowing anarity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures.The use of Decision Diagrams for searching in biochemical and biological graphs is completely new and potentially promising thanks to their ability to encode compactly sets by exploiting their structure and regularity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures.