santapocket20
0 active listings
Last online 3 months ago
Registered for 3+ months
Send message
All seller items (0)
www.selleckchem.com/products/CHIR-258.html
About seller
Optical-matter interactions and photon scattering in a sub-wavelength space are of great interest in many applications, such as nanopore-based gene sequencing and molecule characterization. Previous studies show that spatial distribution features of the scattering photon states are highly sensitive to the dielectric and structural properties of the nanopore array and matter contained on or within them, as a result of the complex optical-matter interaction in a confined system. In this paper, we report a method for shape characterization of subwavelength nanowells using photon state spatial distribution spectra in the scattering near field. Far-field parametric images of the near-field optical scattering from sub-wavelength nanowell arrays on a SiN substrate were obtained experimentally. Dovitinib Finite-difference time-domain simulations were used to interpret the experimental results. The rich features of the parametric images originating from the interaction of the photons and the nanowells were analyzed to recover the size of the nanowells. Experiments on nanoholes modified with Shp2 proteins were also performed. Results show that the scattering distribution of modified nanoholes exhibits significant differences compared to empty nanoholes. This work highlights the potential of utilizing the photon status scattering of nanowells for molecular characterization or other virus detection applications.A novel tapered fiber-optic radiation sensor (TFRS) based on cerium (Ce) and terbium (Tb) co-doped YAG scintillation crystals is demonstrated for the first time. Using the CO2 laser-heated method, a Ce/TbYAG crystal is well embedded into silica glass cladding without any cracks. The scintillation light emitted from the YAG scintillation crystal can be directly coupled into the derived silica optical fiber by the tapered region. The loss of the derived optical fiber is 0.14 dB/cm, which is one order of magnitude lower than the 1.59 dB/cm of the YAG crystal in the TFRS. Subsequently, strong photo- and radio-luminescence of Tb3+ (5D4→7F5) ions in TFRS are achieved under ultraviolet light and high-energy ray excitation, respectively. In particular, a prominent remote radiation response of the TFRS is presented under excitation by γ-rays through fusion splicing with multimode optical fibers. The response is approximately four times larger than that of a plastic scintillation fiber (BCF-12) sensor. Furthermore, the results possess high stability as well as a good linearity between the radiation dose rate and the response intensity. The TFRS in combination with an all-silica fiber system is a promising candidate for remote radiation detection.We propose a compact type floating display system using a dihedral corner reflector array. Conventional floating displays using the dihedral corner reflector array usually have a folded configuration which makes the system bulky. The proposed technique achieves the compact in-line configuration using a pair of decentered lenses. The decentered lenses make the effective incident angle to the dihedral corner reflector array be tilted while maintaining the display panel and the dihedral corner reflector array in parallel. The ghost images are also refracted largely by the decentered lenses, being separated from the desired floating images. The proposed technique is verified by optical experiments.A novel and effective simultaneous recording method, to the best of our knowledge, is proposed for improving the diffraction efficiency and uniformity of full-color holographic optical elements (HOE) using the Bayfol HX102 photopolymer. To improve the diffraction efficiency of a full-color HOE, it is important to find the optimal recording beam intensity taking into account the initial and late responses of the medium. The range of optimal beam intensity for recording full-color HOE can be found experimentally by analyzing the inhibition period and response characteristics of the recording medium for three wavelengths. Through this method, a full-color HOE with an average diffraction efficiency of about 56.81% and a standard deviation of about 1.7% was implemented in a single layer photopolymer.A scheme for polarization control using two laser beams in a non-linear optical medium is studied using both co- and counter-propagating beam geometries. In particular, we show that under certain conditions it is possible for two laser beams to exchange their polarization states. A model accounting for a more realistic, 2D propagation geometry is presented. The 2D model produces drastically different results (compared to the 1D propagation geometry), creating difficulties for implementing polarization control in a realistic setting. A proposal for overcoming these difficulties by reducing the non-linear optical medium to a thin slab is presented.Guided modes of two-dimensional (2D) material-based plasmonic waveguides are applied in photonic devices because of their strong light-matter interaction within atomically thin layers and unique optical characteristics. Numerical simulations and experiments both play crucial roles in exploring unexpected phenomena at the sub-nanoscale of these materials. To efficiently and precisely compute mode characteristics, a multi-domain pseudospectral method (MPM) exhibiting high accuracy and fast convergence is proposed to study 2D material-based plasmonic waveguides in this study to alleviate the highly computational load of the widely used finite difference time domain or finite element method, as they demand extremely fine grid points or meshes around 2D materials. Models of graphene- and black phosphorus-based waveguides demonstrate that the MPM preserves exponential accuracy at relatively low computational cost, compared with the analytical characteristic equation and FEM, respectively. We believe that the proposed MPM offers a highly efficient and accurate approach to the study of 2D material-based photonics devices.Methods for measurement of polarization dependent loss and cross talk of individual few mode fiber components and connected systems are presented. A new method for determining the cross talk of the individual components, from the measurements on the connected system is presented and verified through simulations and measurements. The method is based on Fourier analysis of the wavelength dependent interference of the loss of the system.
santapocket20's listings
User has no active listings