About seller
The strain-specific variation found in the sequence corresponding at the RNA level to functional domains of the 5' UTR, could also potentially impact the secondary/tertiary structural rearrangement of this region. Thus, the variability observed in this 5' end of the genomic region of divergent HIV-1 strains strongly suggests that functions of this region might be affected in a strain-specific manner. Our findings provide new insights into DNA-protein interactions that regulate HIV-1 replication and the influence of strain characterization on the biology of HIV-1 infection.RNA silencing is a conserved mechanism in eukaryotic organisms to regulate gene expression. Argonaute (AGO), Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) proteins are critical components of RNA silencing, but how these gene families' functions in sugarcane were largely unknown. selleck chemicals Most stress-resistance genes in modern sugarcane cultivars (Saccharum spp.) were originated from wild species of Saccharum, for example S. spontaneum. Here, we used genome-wide analysis and a phylogenetic approach to identify four DCL, 21 AGO and 11 RDR genes in the S. spontaneum genome (termed SsDCL, SsAGO and SsRDR, respectively). Several genes, particularly some of the SsAGOs, appeared to have undergone tandem or segmental duplications events. RNA-sequencing data revealed that four SsAGO genes (SsAGO18c, SsAGO18b, SsAGO10e and SsAGO6b) and three SsRDR genes (SsRDR2b, SsRDR2d and SsRDR3) tended to have preferential expression in stem tissue, while SsRDR5 was preferentially expressed in leaves. qRT-PCR analysis showed that SsAGO10c, SsDCL2 and SsRDR6b expressions were strongly upregulated, whereas that of SsAGO18b, SsRDR1a, SsRDR2b/2d and SsRDR5 was significantly depressed in S. spontaneum plants exposed to PEG-induced dehydration stress or infected with Xanthomonas albilineans, causal agent of leaf scald disease of sugarcane, suggesting that these genes play important roles in responses of S. spontaneum to biotic and abiotic stresses.All cellular processes can be ultimately understood in terms of respective fundamental biochemical interactions between molecules, which can be modeled as networks. Very often, these molecules are shared by more than one process, therefore interconnecting them. Despite this effect, cellular processes are usually described by separate networks with heterogeneous levels of detail, such as metabolic, protein-protein interaction, and transcription regulation networks. Aiming at obtaining a unified representation of cellular processes, we describe in this work an integrative framework that draws concepts from rule-based modeling. In order to probe the capabilities of the framework, we used an organism-specific database and genomic information to model the whole-cell biochemical network of the Mycoplasma genitalium organism. This modeling accounted for 15 cellular processes and resulted in a single component network, indicating that all processes are somehow interconnected. The topological analysis of the network showed structural consistency with biological networks in the literature. In order to validate the network, we estimated gene essentiality by simulating gene deletions and compared the results with experimental data available in the literature. We could classify 212 genes as essential, being 95% of them consistent with experimental results. Although we adopted a relatively simple organism as a case study, we suggest that the presented framework has the potential for paving the way to more integrated studies of whole organisms leading to a systemic analysis of cells on a broader scale. The modeling of other organisms using this framework could provide useful large-scale models for different fields of research such as bioengineering, network biology, and synthetic biology, and also provide novel tools for medical and industrial applications.Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 97), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well-developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3 > P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans.Biofouling poses a serious concern for the district cooling (DC) industry. Current industry practises for monitoring biofouling continue to rely on culture-based methods for microbial enumeration, which are ultimately flawed. Computational flow cytometric (cFCM) analyses, which offer enhanced reproducibility and streamlined analytics versus conventional flow cytometry were applied to samples taken from 3 sites in each of 3 plants over a 5-week sampling program. We asked whether the application of cFCM to monitoring planktonic community dynamics in DC plants could be able to provide sufficient information to enhance microbiological-control strategies at site and inform about plant performance impacts. The use of cFCM enabled the evaluation of biocide dosing, deep cleaning treatment efficiencies and routes of microbial ingress into the studied systems. Additionally, inherent risks arising from the reintroduction of microbiological communities into recently cleaned WCT basins from contaminated cooling waters were identified. However, short-term dynamics did not relate with plant performance metrics. In summary, the insights offered by this approach can inform on plant status, enable evaluations of microbial loads during biofouling mitigation programs and, ultimately, enhance industry management of the biofouling process.