randomtailor8
randomtailor8
0 active listings
Last online 3 months ago
Registered for 3+ months
Ugwunagbo, Ondo, Nigeria
708202Show Number
Send message All seller items (0) www.selleckchem.com/products/loxo-292.html
About seller
Therefore, biofilms not only intensified the vector role of microplastics in the migration of heavy metals in freshwater, but also enhanced their combined toxicity, which may have further potential ecological risks to freshwater ecosystems.Thermal treatment can not only efficiently remove volatile pollutants but also distinctly alter the speciation of organic carbon (C) and the behaviors of residual pollutants in contaminated soils. Here we examined the distribution and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in industrially contaminated site soils affected by thermal treatment (temperature ranging of 105-650 ℃) using synchrotron-based infrared microspectroscopy and n-butanol extraction (a mild solvent extractant). In the pristine soils, the sequestration and distribution of PAHs were simultaneously controlled by aromatic C, aliphatic C and clay minerals. Desorption efficiency of PAHs was substantially increased with increasing temperature, whereas the residual PAHs were strongly immobilized within their binding sites evidenced by their dramatically decreased bioaccessibility. Aliphatic and carboxylic C were gradually decomposed and/or carbonized with increasing temperature. In contrast, aromatic C remained relatively recalcitrant during the thermal treatment and was the key controlling factor for the desorption of residual PAHs in the soils with either thermal treatment or n-butanol extraction. This study is the first to visualize the changes in the binding sites and bioaccessibility of PAHs induced by thermal treatment, which have important implications for understanding the sequestration mechanisms of organic pollutants in soil and optimizing the remediation technique.A novel dissimilatory antimonate [Sb(V)]-reducing bacterium, strain SVR, was isolated from soil of a former antimony (Sb) mine. Strain SVR coupled Sb(V) reduction to acetate oxidation with an apparent reduction rate of 2.4 mM d-1. The reduction of Sb(V) was followed by the precipitation and accumulation of white microcrystals in the liquid medium. The precipitates were initially small and amorphous, but they eventually developed to the crystal phase with a length > 50 µm. Strain SVR removed 96% of dissolved Sb as the precipitates. An X-ray diffraction analysis indicated that the microcrystals were the orthorhombic Sb trioxide (Sb2O3), i.e., valentinite. Phylogenetic and physiological analyses revealed that strain SVR is a member of the genus Geobacter. Apoptosis inhibitor The cell suspension of strain SVR incubated with acetate and Sb(V) at pH 7.0 was able to form valentinite. Interestingly, at pH 8.0, the cell suspension formed another crystalline Sb2O3 with a cubic structure, i.e., senarmontite. Our findings provide direct evidence that Geobacter spp. are involved in Sb(V) reduction in nature. Considering its superior capacity for Sb removal, strain SVR could be used for the recovery of Sb and the individual productions of valentinite and senarmontite from Sb-contaminated wastewater.The impacts of metal(loids) on soil microbial communities are research focuses to understand nutrient cycling in heavy metal-contaminated environments. However, how antimony (Sb) and arsenic (As) contaminations synergistically affect microbially-driven ecological processes in the rhizosphere of plants is poorly understood. Here we examined the synergistic effects of Sb and As contaminations on bacterial, archaeal and fungal communities in the rhizosphere of a pioneer plant (Miscanthus sinensis) by focusing on soil carbon and nitrogen cycle. High contamination (HC) soils showed significantly lower levels of soil enzymatic activities, carbon mineralization and nitrification potential than low contamination (LC) environments. Multivariate analysis indicated that Sb and As fractions, pH and available phosphorus (AP) were the main factors affecting the structure and assembly of microbial communities, while Sb and As contaminations reduced the microbial alpha-diversity and interspecific interactions. Random forest analysis showed that microbial keystone taxa provided better predictions for soil carbon mineralization and nitrification under Sb and As contaminations. Partial least squares path modeling indicated that Sb and As contaminations could reduce the carbon mineralization and nitrification by influencing the microbial biomass, alpha-diversity and soil enzyme activities. This study enhances our understanding of microbial carbon and nitrogen cycling affected by Sb and As contaminations.Antibiotic resistance genes (ARGs) have been recognized as emerging pollutants that are widely distributed and accumulated in most of aquatic environment. Although many ARGs-removal technologies are employed, a corresponding discussion of merits and limitations of known technologies is still currently lacking. More importantly, the removal mechanisms of ARGs remain unclear, hindering their ecological feasibility. Thus, further in-depth studies are highly required. In this review, the occurrence and risk of ARGs in aquatic environment are introduced, and the main routes and potential impacts of ARGs dissemination are enumerated. In addition, several novel ARGs detection methods are critically reviewed. Notably, to ensure greater applicability of these technologies, systematic information on how recent technologies impact the ARGs removal and control are comprehensively compared and summarized. Finally, future research directions to alleviate the risk of ARGs in aquatic environment are briefly introduced. Taken together, this review provides useful information to facilitate the development of innovative and feasible ARGs removal technologies and increase their economic viability and ecological sustainability.Heavy metal pollution has been a global concern and key points of environmental pollution prevention and control due to the growing problems of urbanization and industrialization. Rapidly and correctly apportioning sources of heavy metal is still a great challenge because of the stability of source fingerprint and complex interaction of multiple contaminants and sources. In this study, we perform a combination of optimization of pollution source fingerprint and source apportionment through jointly utilizing two machine classification and screening methods for characterizing the pollution sources of heavy metal in the sediments of an urban river and its surrounding soils. Dominance-based rough set model (DRS), content optimization tools, and multivariate curve resolution-alternating least squares model (MCR-WALS) were employed to screen representative pollution source samples, optimize pollution source fingerprint, and apportion the potential sources of heavy metals, respectively. Further, Support vector machine (SVM) was adopted to correspondence analysis results and pollution fingerprint based on the factor characteristics for achieving source apportionment accurately.

randomtailor8's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register