queenfloor0
queenfloor0
0 active listings
Last online 2 days ago
Registered for 3+ days
Bende, Kwara, Nigeria
513777Show Number
Send message All seller items (0) www.selleckchem.com/products/t0070907.html
About seller
Lead is a widely used heavy metal which is highly toxic to kidney, nervous system and reproductive system. A special featured polypyrrole based adsorbent, with admirable salinity confrontation, environmental stability and reusability, was engaged to remove lead ions from aqueous solution. The advantages of using polypyrrole based adsorbent for heavy metal removal are ease of synthesis, biocompatibility and high metal selectivity. In this study, polypyrrole - iron oxide - seaweed nanocomposite was proposed to remove lead ions from aqueous solution. A new method was adopted for the synthesis of polypyrrole - iron oxide - seaweed nanocomposite. #link# The nanocomposite was prepared within a short time using ultra-assisted polymerization technique. The synthesized nanocomposite adsorbent was characterized using FTIR, SEM, TEM, EDS, XRD, XPS and zeta potential analysis. The adsorption capability of polypyrrole - iron oxide - seaweed nanocomposite towards lead was explored. The influence of pH, contact time, adsorbent dosage, metal ion concentration and recyclability were investigated. The optimum condition of these parameters was found to be pH- 5, temperature - 40 °C, initial concentration - 100 mg/L and contact time - 20 min and the results showed that the hybrid composite adsorbed 97.25% Pb (II). Different isotherms such as Langmuir, Freundlich, Temkin and D-R models were also studied for the adsorption of Pb ions. The kinetics of the adsorption process was examined by I order, II order and intra particle diffusion kinetic models. The mechanism of lead adsorption onto the nanocomposite was also explored.Herein, pyrolysis of cattle manure was conducted to synthesize an effective material for removing heavy metals (e.g., selenium) from water environments. To remove selenate from aqueous solution, iron-impregnated cattle manure biochar (Fe/CM-biochar) was synthesized. The Fe-impregnation was performed by pre-treating cattle manure before its pyrolysis. The pretreatment increased the biochar yield. Influence of various factors such as contacting time, initial selenate concentration, reaction temperature, pH, and presence of coexisting anions were explored by performing batch adsorption experiments. The selenate adsorption reached equilibrium within 15 min. The Langmuir model was better fitted to equilibrium adsorption data than the Freundlich model. The maximum adsorption capacity of Fe/CM-biochar was calculated to be 52.56 mg-Se/g, which is superior to other adsorbents reported in the literature. As the reaction temperature increased in the range (15-35) °C, selenate adsorption on Fe/CM-biochar showed an endothermic and nonspontaneous reaction. The enthalpy change during selenate adsorption was 18.44 kJ/mol, which ranges in physical adsorption. The increase of solution pH (3-11) reduced the selenate adsorption (46.4-37.7 mg-Se/g). The extent of co-existing anion impact on selenate adsorption followed an order of HPO42- > HCO3- > SO42- > NO3-. These results indicate that Fe/CM-biochar is an effective functional material for the removal of selenate from wastewater.Two types of continuous stirred tank moving bed biofilm reactors (ST-MBBR) and plug flow MBBR (PF-MBBR) were compared for nitrification. PF-MBBR showed strong shock resistance to temperature, and ammonium oxidation ratio (AOR) was 9.63% higher than that in the ST-MBBR, although the average biomass and biofilm thickness of ST-MBBR were 7.32-18.59%, 9.44-14.06% higher than those in the PF-MBBR. Meanwhile, a lower nitrite accumulation ratio (NAR) was observed (54.88%) in the PF-MBBR than the ST-MBBR (78.92%) due to different operation modes, and the divergence was demonstrated by the microbial quantitative analysis. Nitrification kinetics revealed that the temperature coefficient (θ) in the ST-MBBR (1.068) was much higher than that in the PF-MBBR (1.006-1.015), proving the contrasting nitrification performances caused by temperature shock. According to the Monod equation, the half-saturation coefficient (KN) in the ST-MBBR was 0.19 mg/L while it varied around 0.12-0.24 mg/L in the PF-MBBR, revealing various NH4+ affinity owing to different biofilm thickness and microbial composition. Finally, MBBR optimization related to operation mode, temperature, and free ammonium (FA) inhibition for nitrite accumulation was discussed.Nano zero-valent iron (Fe0) has been widely used to remove Uranium (U(VI)). In order to enhance the performance of Fe0 toward U(VI) removal, the Fe0 was assembled into graphene oxide (GO) sheets via 3-aminopropyl triethoxysilane (APTES) as Fe0/APTES-GO composites. The Fe0/APTES-GO composites were triumphantly prepared, characterized and analyzed by means of Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) together with Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). SEM and TEM-EDS results manifested that Fe0 particles were encapsulated into rolled-up GO, which greatly improved the stability of Fe0. Batch experiment showed that only a small amount of Fe2+ was leached in the first two leaching cycles of Fe0/APTES-GO composites. The removal capacity of Fe0/APTES-GO composites was up to 1357.99 mg/g at pH = 4.1 and T = 50 °C, which was mainly attributed to the reducing activity of Fe0 and an abundance of functional groups (i.e., -COOH, C-OH and -OH) on the Fe0/APTES-GO composites. The electrostatic potential (ESP) from the calculation also supported that U(VI) tended to be reduced at the back side of the GO-Fe0 cluster. The hamstrings remain the most injured muscle group within the Australian Football League (AFL). To investigate preseason measures of hip and knee joint position sense (JPS) and prospective hamstring injury in AFL players. Prospective cohort study. selleck chemical of 116 AFL players were recruited for this study. JPS was assessed with 3-D sensors using mono-articular hip (45° flexion and 0°) and knee (90° and 45° flexion) joint reproduction tests conducted in the preseason. Hamstring injury data were collected prospectively in the following AFL season. Wilcoxon-signed rank tests were used to assess between the subsequently injured and uninjured limbs. Mann-Whitney U tests were used to assess between group differences and odds ratio (OR) were used to predict players at risk of hamstring injury. Eight players with JPS data sustained a season hamstring injury and 108 players did not. JPS was not significantly different between the subsequently injured and uninjured limbs (all P values>0.05). No significant differences for any JPS measure were found between the subsequently injured and uninjured players (all p's>0.

queenfloor0's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register