About seller
Liquid-liquid phase separation (LLPS) of protein solutions has been usually related to strong protein-protein interactions (PPI) under certain conditions. For the first time, we observed the LLPS phenomenon for a novel protein modality, peptide-fused monoclonal antibody (pmAb). LLPS emerged within hours between pH 6.0 to 7.0 and disappeared when solution pH values decreased to pH 5.0 or lower. Negative values of interaction parameter (kD) and close to zero values of zeta potential (ζ) were correlated to LLPS appearance. However, between pH 6.0 to 7.0, a strong electrostatic repulsion force was expected to potentially avoid LLPS based on the sequence predicted pI value, 8.35. Surprisingly, this is significantly away from experimentally determined pI, 6.25, which readily attributes the LLPS appearances of pmAb to the attenuated electrostatic repulsion force. Such discrepancy between experiment and prediction reminds the necessity of actual measurement for a complicated modality like pmAb. Furthermore, significant protein degradation took place upon thermal stress at pH 5.0 or lower. Therefore, the effects of pH and selected excipients on the thermal stability of pmAb were further assessed. A formulation consisting of arginine at pH 6.5 successfully prevented the appearance of LLPS and enhanced its thermal stability at 40 °C for pmAb. In conclusion, we have reported LLPS for a pmAb and successfully resolved the issue by optimizing formulation with aids from PPI characterization. Deep brain stimulation (DBS) has become a widely performed surgical procedure for patients with medically refractory movement disorders and mental disorders. It is clinically important to set up a MRI protocol to map the brain targets and electrodes of the patients before and after DBS and to understand the imaging artifacts caused by the electrodes. Five patients with DBS electrodes implanted in the habenula (Hb), fourteen patients with globus pallidus internus (GPi) targeted DBS, three pre-DBS patients and seven healthy controls were included in the study. The MRI protocol consisted of magnetization prepared rapid acquisition gradient echo T1 (MPRAGE T1W), 3D multi-echo gradient recalled echo (ME-GRE) and 2D fast spin echo T2 (FSE T2W) sequences to map the brain targets and electrodes of the patients. Phantom experiments were also run to determine both the artifacts and the susceptibility of the electrodes. Signal to noise ratio (SNR) on T1W, T2W and GRE datasets were measured. The visibility of the braent pre- and post-operative visualization of the brain targets and electrodes for patients undergoing DBS treatment. Although the artifacts around the electrodes can be severe, sometimes these same artifacts can be useful in identifying their location.Donepezil (DNPZ) has shown neuroprotective effect in many disorders. The current study tested the putative retinoprotection provided by donepezil in mouse diabetic retinopathy. read more Swiss albino mice were allocated to, 1] saline control, 2] diabetic, 3&4] diabetic+DNPZ (1 or 4 mg/kg). After induction of diabetes, mice were maintained for 8 weeks then DNPZ therapy was launched for 28 days. Retinas were isolated and used for histopathology and immunohistochemistry for caspase 3 and the anti-apoptotic protein, B-cell lymphoma 2 (BCl2). Retinas were examined for glutamate, acetylcholine and oxidation markers. Western blot analysis measured inflammatory cytokines, N-methyl-d-aspartate receptors (NMDARs), phosphorylated and total phosphatidylinositol-3 kinase and mTOR, BCl2 and cleaved caspase 3. Significant histopathological changes and decreased thickness were found in diabetic retinas (125.52 ± 2.85 vs. 157.15 ± 7.55 in the saline group). In addition, retinal glutamate (2.39-fold), inflammatory cytokines and NMDARs proteins (4.9-fold) were higher in the diabetic retinas. Western blot analysis revealed low ratio of phosphorylated/total PI3K (0.21 ± 0.043 vs. 1 ± 0.005) and mTOR (0.18 ± 0.04 vs. 1 ± 0.005), low BCl2 (0.28 ± 0.06 vs. 1 ± 0.005) and upregulated cleaved caspase 3 (5.18 ± 1.27 vs. 1 ± 0.05 in the saline group) versus the saline control. DNPZ ameliorated the histopathologic manifestations and to prevent the decrease in retinal thickness. DNPZ (4 mg/kg) improved phosphorylation of PI3K (0.76 ± 0.12 vs. 0.21 ± 0.04) and mTOR (0.59 ± 0.09 vs. 0.18 ± 0.04) and increased BCl2 (0.75 ± 0.08 vs. 0.28 ± 0.06) versus the diabetic control group. This study explained the retinoprotective effect of DNPZ in mouse diabetic retinopathy and highlighted that mitigation of excitotoxicity, improving phosphorylation of PI3K/mTOR and increasing BCl2 contribute to this effect. Liraglutide, a glucagon-like peptide-1(GLP-1) analog, is effective for the treatment of type II diabetes and nonalcoholic fatty liver disease (NAFLD). It was proved that gut microbiome plays a role in the development of NAFLD. This study aims to observe the therapeutic effect of liraglutide on nonalcoholic fatty liver (NAFL) in mice and effect on the gut microbial community. The db/db mice were used as the NAFL model, and lactulose was used as the positive control drug. Hepatic triglyceride, liver histopathology, and indices of glucolipid metabolism, including fasting blood glucose, fasting insulin, insulin resistance index and blood lipids were evaluated after treatment of liraglutide or lactulose for four weeks. The colonic microbiome of the mice was analyzed by 16S rRNA gene sequencing. Liraglutide significantly reduced the hepatic triglyceride (TG) content, alanine aminotransferase (ALT) activity, fasting blood glucose, insulin resistance and serum low density lipoprotein (LDL) in the db/db mice. Ineria related to glucolipid metabolism and intestinal inflammation. Affecting gut microbiome might be a potential mechanism of liraglutide in treating NAFL. The hyperpermeability of gut-vascular barrier (GVB) plays a role in gut-derived sepsis. The goal of this study was to evaluate if berberine might improve hepatic apolipoprotein M (ApoM) generation and raise plasma ApoM level to protect the compromised GVB. The compromised GVB was induced by sepsis. Hepatic ApoM mRNA and phosphoenolpyruvate carboxykinase (PEPCK) mRNA and plasma ApoM level were assayed by qRT-PCR and ELISA, respectively. The permeability of intestinal capillary in vivo and of rat intestinal microvascular endothelial cells (RIMECs) in vitro was assayed by FITC-dextran. The blood glucose was detected by a glucometer. Plasma insulin, TNF-α and IL-1β were assayed by ELISA. The plasmalemma vesicle-associated protein-1 (PV1), β-catenin and occludin in RIMECs were assayed by Western blot. Sepsis decreased hepatic ApoM mRNA and plasma ApoM level, but raised hepatic PEPCK mRNA and plasma glucose, insulin, TNF-α, and IL-1β levels. The increased vascular endothelial permeability was abrogated by recombinant rat ApoM in vivo or ApoM-bound S1P in vitro.