olivefender9
olivefender9
0 active listings
Last online 4 days ago
Registered for 4+ days
Isuikwuato, Benue, Nigeria
419782Show Number
Send message All seller items (0) www.selleckchem.com/products/ym201636.html
About seller
Timely detection of liver fibrosis by X-ray computed tomography (CT) can prevent its progression to fatal liver diseases. However, it remains quite challenging because conventional CT can only identify the difference in density instead of X-ray attenuation characteristics. Spectral CT can generate monochromatic imaging to specify X-ray attenuation characteristics of the scanned matter. Herein, an X-ray energy-dependent attenuation strategy originated from bismuth (Bi)-based nanoprobes (BiF3 @PDA@HA) is proposed for the accurate diagnosis of liver fibrosis. Bi element in BiF3 @PDA@HA can exhibit characteristic attenuation depending on different levels of X-ray energy via spectral CT, and that is challenging for conventional CT. In this study, selectively accumulating BiF3 @PDA@HA nanoprobes in the hepatic fibrosis areas can significantly elevate CT value for 40 Hounsfield units on 70 keV monochromatic images, successfully differentiating from healthy livers and achieving the diagnosis of liver fibrosis. Furthermore, the enhancement produced by the BiF3 @PDA@HA nanoprobes in vivo increases as the monochromatic energy decreases from 70 to 40 keV, optimizing the conspicuity of the diseased areas. As a proof of concept, the strategically designed nanoprobes with energy-dependent attenuation characteristics not only expand the scope of CT application, but also hold excellent potential for precise imaging-based disease diagnosis.Aqueous rechargeable zinc-metal-based batteries are an attractive alternative to lithium-ion batteries for grid-scale energy-storage systems because of their high specific capacity, low cost, eco-friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc-ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer-coating-layer-modified Zn anode displays dendrite-free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn-doped V2 O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc-metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.Recently, triple (H+ /O2- /e- ) conducting oxides (TCOs) have shown tremendous potential to improve the performance of various types of energy conversion and storage applications. The systematic understanding of the TCO is limited by the difficulty of properly identifying the proton movement in the TCO. Herein, the isotope exchange diffusion profile (IEDP) method is employed via time-of-flight secondary ion mass spectrometry to evaluate kinetic properties of proton in the layered perovskite-type TCOs, PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+ δ (PBSCF).Within the strategy, the PBSCF shows two orders of magnitude higher proton tracer diffusion coefficient (D* H , 1.04 × 10-6 cm2 s-1 at 550 °C) than its oxygen tracer diffusion coefficient at even higher temperature range (D* O, 1.9 × 10-8 cm2 s-1 at 590 °C). Also, the surface exchange coefficient of a proton (k*H ) is successfully obtained in the value of 2.60 × 10-7 cm s-1 at 550 °C. In this research, an innovative way is provided to quantify the proton kinetic properties (D* H and k*H ) of TCOs being a crucial indicator for characterizing the electrochemical behavior of proton and the mechanism of electrode reactions.Physiological-relevant in vitro tissue models with their promise of better predictability have the potential to improve drug screening outcomes in preclinical studies. Despite the advances of spheroid models in pharmaceutical screening applications, variations in spheroid size and consequential altered cell responses often lead to nonreproducible and unpredictable results. Here, a microfluidic multisize spheroid array is established and characterized using liver, lung, colon, and skin cells as well as a triple-culture model of the blood-brain barrier (BBB) to assess the effects of spheroid size on (a) anticancer drug toxicity and (b) compound penetration across an advanced BBB model. YM201636 mw The reproducible on-chip generation of 360 spheroids of five dimensions on a well-plate format using an integrated microlens technology is demonstrated. While spheroid size-related IC50 values vary up to 160% using the anticancer drugs cisplatin (CIS) or doxorubicin (DOX), reduced CISDOX drug dose combinations eliminate all lung microtumors independent of their sizes. A further application includes optimizing cell seeding ratios and size-dependent compound uptake studies in a perfused BBB model. Generally, smaller BBB-spheroids reveal an 80% higher compound penetration than larger spheroids while verifying the BBB opening effect of mannitol and a spheroid size-related modulation on paracellular transport properties.Manipulation of Ohmic contacts in 2D transition metal dichalcogenides for enhancing the transport properties and enabling its application as a practical device has been a long-sought goal. In this study, n-type tungsten disulfide (WS2 ) single atomic layer to improve the Ohmic contacts of the p-type molybdenum ditelluride (MoTe2 ) material is covered. The Ohmic properties, based on the lowering of Schottky barrier height (SBH) owing to the tunneling barrier effect of the WS2 monolayer, are found to be unexpectedly excellent at room temperature and even at 100 K. The improved SBH and contact resistances are 3 meV and 1 MΩ µm, respectively. The reduction in SBH and contact resistance is confirmed with temperature-dependent transport measurements. This study further demonstrates the selective carrier transport across the MoTe2 and WS2 layers by modulating the applied gate voltage. This WS2 /MoTe2 heterostructure exhibits excellent gate control over the currents of both channels (n-type and p-type). The on/off ratios for both the electron and hole channels are calculated as 107 and 106 , respectively, indicating good carrier type modulation by the electric field of the gate electrode.

olivefender9's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register