About seller
Current-induced magnetization switching by spin-orbit torque generated in heavy metals offers an enticing realm for energy-efficient memory and logic devices. The spin Hall efficiency is a key parameter in describing the generation of spin current. Recent findings have reported enhancement of spin Hall efficiency by mechanical strain, but its origin remains elusive. Here, we demonstrate a 45% increase in spin Hall efficiency in the platinum/cobalt (Pt/Co) bilayer, of which 78% of the enhancement was preserved even after the strain was removed. Spin transparency and X-ray magnetic circular dichroism revealed that the enhancement was attributed to a bulk effect in the Pt layer. see more was further confirmed by the linear relationship between the spin Hall efficiency and resistivity, which indicates an increase in skew-scattering. These findings shed light on the origin of enhancement and are promising in shaping future utilization of mechanical strain for energy-efficient devices.As the global water shortage becomes increasingly serious, it is highly imperative to develop efficient, renewable, and large-scale water purification devices. Herein, an efficient solar-driven water purification device of wood coated with Fe2O3 nanoparticle-decorated carbon nanotubes (Fe2O3/CNT) is fabricated in only a few seconds by one-step combustion of ferric acetylacetonate in an ambient environment. The thin layer of the Fe2O3/CNT hybrid coated on the upper surface of the wood serves as a solar-light absorber for converting solar energy to thermal energy, while the thermally insulating wood layer with vertically aligned channels endows the device with rapid water upward transport and localizes the generated heat inside the Fe2O3/CNT layer for solar-driven water evaporation. As a result, the wood/Fe2O3/CNT device achieves a high water steam generation capability of 1.42 kg m-2 h-1 along with an excellent evaporation efficiency of 87.2% under 1 sun irradiation, higher than most of the wood-based solar-driven water evaporation device reported. This device is also efficient in the purification of seawaters and wastewaters. This work demonstrates a rapid and facile methodology for large-scale fabrication of wood/Fe2O3/CNT devices for efficient solar-driven water purification.Phase transition engineering, with the ability to alter the electronic structure and physicochemical properties of materials, has been widely used to achieve the thermodynamically unstable metallic phase MoS2 (1T-MoS2), although the complex operating conditions and low yield of previous strategies make the large-scale fabrication of 1T-MoS2 a big challenge. #link# Herein, we report a facile electron injection strategy for phase transition engineering and fabricate a composite of conductive TiO chemically bonded to 1T-MoS2 nanoflowers (TiO-1T-MoS2 NFs) on a large scale. The underlying mechanism analysis reveals that electron-injection-engineering triggers a reorganization of the Mo 4d orbitals and results in a 100% phase transition of MoS2 from 2H to 1T. In the TiO-1T-MoS2 NFs composite, the 1T-MoS2 demonstrates a higher electronic conductivity, a lower Na+ diffusion barrier, and a more restricted S release than 2H-MoS2. In addition, conductive TiO bonding successfully resolves the stability challenge of the 1T phase. These merits endow TiO-1T-MoS2 NFs electrodes with an excellent rate capability (650/288 mAh g-1 at 50/20 000 mA g-1, respectively) and an outstanding cyclability (501 mAh g-1 at 1000 mA g-1 after 700 cycles) in sodium ion batteries. Such an improvement signifies that this facile and scalable phase-transition engineering combined with a deep mechanism analysis offers an important reference for designing advanced materials for various applications.We present single-mode nanowire (NW) lasers with an ultralow threshold in the near-infrared spectral range. To ensure the single-mode operation, the NW diameter and length are reduced specifically to minimize the longitudinal and transverse modes of the NW cavity. Increased optical losses and reduced gain volume by the dimension reduction are compensated by an excellent NW morphology and InGaAs/GaAs multiquantum disks. At 5 K, a threshold low as 1.6 μJ/cm2 per pulse is achieved with a resulting quality factor exceeding 6400. By further passivating the NW with an AlGaAs shell to suppress surface nonradiative recombination, single-mode lasing operation is obtained with a threshold of only 48 μJ/cm2 per pulse at room temperature with a high characteristic temperature of 223 K and power output of ∼0.9 μW. These single-mode, ultralow threshold, high power output NW lasers are promising for the development of near-infrared nanoscale coherent light sources for integrated photonic circuits, sensing, and spectroscopy.Solar thermal fuels offer a closed cycle and a renewable energy storage strategy by harvesting photon energy within the chemical conformations of molecules and retrieving energy by an induced release of heat. However, the majority of reports are limited to the ultraviolet light storage, which potentially interferes with the surrounding environment and reduces the material lifetime. Here, we present a novel arylazopyrazole (AAP)-containing dendrimer that not only addresses the hindrance of visible light storage for solar thermal fuels but also exhibits outstanding performances of abundant energy conversion and stable storage, which are attributed to the substantial absorbance in visible wavelengths of para-thiomethyl-substituted AAP groups and the stability of cis isomers, respectively. The energy density of the dendrimer fuel after efficiently harvesting blue light (405 nm) is as high as 0.14 MJ kg-1 (67 kJ mol-1), and the storage half-life of the fabricated dendrimer film can reach up to 12.9 days. Moreover, the heat release of the dendrimer film can be triggered by different stimuli (light and heat). The dendrimer film displays a 6.5 °C temperature difference between trans isomers and cis isomers during green light irradiation. Our work provides a fascinating avenue to fabricate visible light storage solar thermal fuels and unlocks the possibility of developing natural sunlight storage in the future.