About seller
However, emerging evidence suggests that cell-cell communication via exosomes induces tumor innervation, and thus exosomes may also mediate neural regulation of the TME. In this Review, seminal studies establishing tumor innervation are discussed, and known and putative signaling mechanisms between peripheral nerves and components of the TME are explored as a means to identify potential opportunities for therapeutic intervention.A small percentage of people living with HIV-1 can control viral replication without antiretroviral therapy (ART). These patients are called elite controllers (ECs) if they are able to maintain viral suppression without initiating ART and posttreatment controllers (PTCs) if they control HIV replication after ART has been discontinued. Both types of controllers may serve as a model of a functional cure for HIV-1 but the mechanisms responsible for viral control have not been fully elucidated. In this review, we highlight key lessons that have been learned so far in the study of ECs and PTCs and their implications for HIV cure research.Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.The genetic peripheral neuropathy known as Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive mutations in the FIG4 gene. The transformational success of adeno-associated virus (AAV) gene therapy for spinal muscular atrophy has generated substantial interest in using this approach to create similar treatments for CMT. In this issue of the JCI, Presa et al. provide a preclinical demonstration of efficacy using AAV-directed gene therapy for CMT4J. The study showed a dramatic improvement in both survival and neuropathy symptoms in a severe mouse model of CMT4J after administration of AAV gene therapy at several time points. The authors' approach advances the technique for delivering treatments to individuals with CMT, for which FDA-approved therapies have not yet come to the clinic.Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of non-alcoholic fatty liver disease (NALFD) in females. Administering low-dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low-dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in the liver of DHT mice compared to controls. p-ACC levels were unaltered in the liver. Other lipid metabolism pathways were examined in the liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in the liver. We show that in the presence of DHT, the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. Adenosine disodium triphosphate nmr We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.Chronic exposure to high circulating glucocorticoid or ghrelin concentrations increases food intake, weight gain and adiposity, suggesting that ghrelin could contribute to the metabolic effects of chronic glucocorticoids. In male mice, however, blocking ghrelin receptor (GHSR) signaling increased the weight gain and adiposity induced by chronic corticosterone (CORT), rather than attenuating them. In the current study, we investigated the role of GHSR signaling in the metabolic effects of chronic exposure to high circulating CORT in female mice. To do this, female WT and GHSR KO mice were treated with either CORT in a 1% ethanol (EtOH) solution or 1% EtOH alone in their drinking water for 32 days (n = 5-8/group). Body weight, food, and water intake as well as vaginal cyclicity were assessed daily. As expected, CORT treatment-induced significant increases in body weight, food intake, adiposity and also impaired glucose tolerance. In contrast to results observed in male mice, WT and GHSR KO female mice did not differ on any of these parameters. Neither plasma levels of ghrelin, LEAP-2, the endogenous GHSR antagonist produced by the liver, nor their ratio were altered by chronic glucocorticoid exposure. In addition, CORT treatment disrupted vaginal cyclicity, produced a reduction in sucrose consumption and increased locomotor activity regardless of genotype. Chronic CORT also decreased exploration in WT but not GHSR KO mice. Collectively, these data suggest that most metabolic, endocrine, reproductive and behavioral effects of chronic CORT exposure are independent of GHSR signaling in female mice.