About seller
The simultaneous output of highly sensitive and reproducible signals for surface-enhanced Raman spectroscopy (SERS) technology remains difficult. Here, we propose a two-dimensional (2D) composite structure using the repeated annealing method with MoS2 film as the molecular adsorbent. This method provides enlarged Au nanoparticle (NP) density with much smaller gap spacing, and thus dramatically increases the density and intensity of hot spots. The MoS2 films distribute among the hot spots, which is beneficial for uniform molecular adsorption, and further increases the sensitivity of the SERS substrate. Three kinds of molecules were used to evaluate the SERS substrate. Ultra-sensitive, highly repetitive, and stable SERS signals were obtained, which would promote the application process of SERS technology in quantitative analysis and detection.A highly sensitive silicon photonic temperature sensor based on silicon-on-insulator (SOI) platform has been proposed and demonstrated. A two-mode nano-slot waveguide device structure cladded with a nematic liquid crystal (LC), E7, was adopted to facilitate strong light-matter interaction and achieve high sensitivity. The fabricated sensor was characterized by measuring the optical transmission spectra at different ambient temperatures. The extracted temperature sensitivities of the E7-filled device are 0.810 nm/°C around room temperature and 1.619 nm/°C near 50°C, which match well with simulation results based on a theoretical analysis. The results obtained represent the highest experimentally demonstrated temperature sensitivity for a silicon-waveguide temperature sensor on SOI platform. The slot waveguide directional coupler device configuration provides submicron one-dimensional spatial resolution and flexible selection in LC materials for designing temperature sensitivity and operational temperature range required by specific applications.Determination of the active centers distribution across the fiber core as well as calculation of absorption cross sections is a challenging task for all types of bismuth-doped fibers. This is due to the low concentration of active centers and the ability of the bismuth ions to form various centers in silica-based glasses. In this work, we demonstrate the results of experimental measurement of radial distribution of bismuth active centers associated with phosphorus in fiber core using the luminescence spectroscopy. The shape of the distribution turned out to have prominent reduction of the active centers in the middle of the core. With these data, absorption cross section spectra were calculated by two methods. Both approaches demonstrated close values of absorption cross sections regardless the bismuth concentration and fiber geometry. The maximum of the absorption cross section was found to be 2.1 ± 0.3 pm2.A deep learning (DL) based digital backpropagation (DBP) method with a 1 dB SNR gain over a conventional 1 step per span DBP is demonstrated in a 32 GBd 16QAM transmission across 1200 km. The new DL-DPB is shown to require 6 times less computational power over the conventional DBP scheme. The achievement is possible due to a novel training method in which the DL-DBP is blind to timing error, state of polarization rotation, frequency offset and phase offset. learn more An analysis of the underlying mechanism is given. The applied method first undoes the dispersion, compensates for nonlinear effects in a distributed fashion and reduces the out of band nonlinear modulation due to compensation of the nonlinearities by having a low pass characteristic. We also show that it is sufficient to update the elements of the DL network using a signal with high nonlinearity when dispersion or nonlinearity conditions changes. Lastly, simulation results indicate that the proposed scheme is suitable to deal with impairments from transmission over longer distances.Metasurfaces, the two-dimensional artificial metamaterials, have attracted intensive attention due to their abnormal ability to manipulate the electromagnetic wave. Although there have been considerable efforts to design and fabricate beam steering devices, continuously tunable devices with a uniform bias-voltage have not been achieved. Finding new ways to realize more convenient and simpler wavefront modulation of light still requires research efforts. In this article, a series of novel reflective metasurfaces are proposed to continuously modulate the wavefront of terahertz light by uniformly adjusting the bias-voltage. By introducing the innovation of nonuniform periodic structures, we realize the gradient distribution of the reflected light phase-changing-rate which is the velocity of phase changing with Fermi energy. Based on strict phase distribution design scheme, a beam scanner and a variable-focus reflective metalens are both demonstrated successfully. Furthermore, dynamic and continuous control of either the beam azimuth of beam scanner or the focal length of metalens can be achieved by uniformly tuning the Fermi energy of graphene. Our work provides a potentially efficient method for the development and simplification of the adjustable wavefront controlling devices.Boolean chaos is widely used in physical systems for its digital-like behavior and complex dynamics. However, electronic logic devices limit the bandwidth of Boolean chaos and its development. Based on an autonomous optical Boolean network, a method of generating optical Boolean chaos with 14 GHz bandwidth is proposed, exploring the physical mechanism of the chaos generated by the system and analyzing the influences of external parameters on the dynamic characteristics of the system. The output status is mainly affected by the detection optical power, carrier recovery time of the semiconductor optical amplifier, and difference between the two self-feedback time delays.In this paper, polyvinyl chloride (PVC) gels microlens arrays (MLAs) with controllable curvatures were prepared by evaporation of the solvent under DC electric fields. In order to obtain these arrays, the PVC gel solution was first injected into the cofferdam of a ring array patterned electrode substrate. Upon polarization under DC electric field, the electric charge injected from the cathode was carried by the plasticizers towards the anode to accumulate on its surface. After complete evaporation of the solvent, the PVC gels formed stable MLAs. The focal length of the formed MLAs obtained after evaporation of the 100 µL PVC gel solvent under 30 V DC field was 8.68 mm. The focal length of the as-obtained PVC gel-based MLAs can be well-controlled by merely tuning the strength of the electric field or by changing the volume of the PVC gel solution. Thus, it can be concluded that the proposed methodology looks very promising for future fabrication of MLAs with uniform size in larger areas.