About seller
The purpose of a battery thermal management system (BTMS) is to maintain the battery safety and efficient use as well as ensure the battery temperature is within the safe operating range. The traditional air-cooling-based BTMS not only needs extra power, but it could also not meet the demand of new lithium-ion battery (LIB) packs with high energy density, while liquid cooling BTMS requires complex devices to ensure the effect. Therefore, phase change materials (PCMs)-based BTMS is becoming the trend. By using PCMs to absorb heat, the temperature of a battery pack could be kept within the normal operating range for a long time without using any external power. PCMs could greatly improve the heat dissipation efficiency of BTMS by combining with fillers such as expanded graphite (EG) and metal foam for their high thermal conductivity or coordinating with fins. In addition, PCMs could also be applied in construction materials, solar thermal recovery, textiles and other fields. Herein, a comprehensive review of the PCMs applied in thermal storage devices, especially in BTMS, is provided. In this work, the literature concerning current issues have been reviewed and summarized, while the key challenges of PCM application have been pointed out. This review may bring new insights to the PCM application.Manganese oxide (MnO2) is a promising material for supercapacitor applications, with a theoretical ultra-high energy density of 308 Wh/kg. However, such ultra-high energy density has not been achieved experimentally in MnO2-based supercapacitors because of several practical issues, such as low electrical conductivity of MnO2, incomplete utilization of MnO2, and dissolution of MnO2. The present study investigates the potential of MnO2/reduced graphene oxide (rGO) hybrid nanoscroll (GMS) structures as electrode material for overcoming the difficulties and for developing ultra-high-energy storage systems. A hybrid supercapacitor, comprising MnO2/rGO nanoscrolls as anode material and activated carbon (AC) as a cathode, is fabricated. The GMS/AC hybrid supercapacitor exhibited enhanced energy density, superior rate performance, and promising Li storage capability that bridged the energy-density gap between conventional Li-ion batteries (LIBs) and supercapacitors. The fabricated GMS/AC hybrid supercapacitor demonstrates an ultra-high lithium discharge capacity of 2040 mAh/g. Selleckchem FM19G11 The GMS/AC cell delivered a maximum energy density of 105.3 Wh/kg and a corresponding power density of 308.1 W/kg. It also delivered an energy density of 42.77 Wh/kg at a power density as high as 30,800 W/kg. Our GMS/AC cell's energy density values are very high compared with those of other reported values of graphene-based hybrid structures. The GMS structures offer significant potential as an electrode material for energy-storage systems and can also enhance the performance of the other electrode materials for LIBs and hybrid supercapacitors.The biofilm-producing strains of P. aeruginosa colonize various surfaces, including food products and industry equipment that can cause serious human and animal health problems. The biofilms enable microorganisms to evolve the resistance to antibiotics and disinfectants. Analysis of the P. aeruginosa strain (serotype O6, sequence type 2502), isolated from an environment of meat processing (PAEM) during a ready-to-cook product storage (-20 °C), showed both the mosaic similarity and differences between free-living and clinical strains by their coding DNA sequences. Therefore, a cold shock protein (CspA) has been suggested for consideration of the evolution probability of the cold-adapted P. aeruginosa strains. In addition, the study of the action of cold-active enzymes from marine bacteria against the food-derived pathogen could contribute to the methods for controlling P. aeruginosa biofilms. The genes responsible for bacterial biofilm regulation are predominantly controlled by quorum sensing, and they directly or indirectly participate in the synthesis of extracellular polysaccharides, which are the main element of the intercellular matrix. The levels of expression for 14 biofilm-associated genes of the food-derived P. aeruginosa strain PAEM in the presence of different concentrations of the glycoside hydrolase of family 36, α-galactosidase α-PsGal, from the marine bacterium Pseudoalteromonas sp. KMM 701 were determined. The real-time PCR data clustered these genes into five groups according to the pattern of positive or negative regulation of their expression in response to the action of α-galactosidase. The results revealed a dose-dependent mechanism of the enzymatic effect on the PAEM biofilm synthesis and dispersal genes. Globally, the number of refugees is growing. For many refugees, entering the labor market in their new country of residence is challenging. Some remain forever dependent on welfare services, and this not only weakens their chances of integration, but also harms their health and well-being. This qualitative single case study focused on a group of war-stricken refugees in Denmark. The study investigated the impact of an eight-month horticultural vocational program aimed at improving their ability to complete an education program or to work. A total of 29 interviews were conducted and analyzed using the interpretative phenomenological analysis (IPA) method. The natural environment in the eco-village evoked a feeling of safety as well as positive memories in the participants, in contrast to the traumatic memories they had of their flight. Horticultural activities and the positive and respectful attitude from staff initiated a recovery process. New skills were achieved at an individual pace, and feelings of isolation decreased. These findings can be implicated in future interventions.The natural environment in the eco-village evoked a feeling of safety as well as positive memories in the participants, in contrast to the traumatic memories they had of their flight. Horticultural activities and the positive and respectful attitude from staff initiated a recovery process. New skills were achieved at an individual pace, and feelings of isolation decreased. These findings can be implicated in future interventions.