About seller
The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.Three-dimensional reconstruction of the electron-scattering potential of biological macromolecules from electron cryo-microscopy (cryo-EM) projection images is an ill-posed problem. The most popular cryo-EM software solutions to date rely on a regularization approach that is based on the prior assumption that the scattering potential varies smoothly over three-dimensional space. Although this approach has been hugely successful in recent years, the amount of prior knowledge that it exploits compares unfavorably with the knowledge about biological structures that has been accumulated over decades of research in structural biology. Here, a regularization framework for cryo-EM structure determination is presented that exploits prior knowledge about biological structures through a convolutional neural network that is trained on known macromolecular structures. This neural network is inserted into the iterative cryo-EM structure-determination process through an approach that is inspired by regularization by denoising. It is shown that the new regularization approach yields better reconstructions than the current state of the art for simulated data, and options to extend this work for application to experimental cryo-EM data are discussed.Cofactor-independent urate oxidase (UOX) is an ∼137 kDa tetrameric enzyme essential for uric acid (UA) catabolism in many organisms. UA is first oxidized by O2 to de-hydro-isourate (DHU) via a peroxo intermediate. DHU then undergoes hydration to 5-hy-droxy-isourate (5HIU). At different stages of the reaction both catalytic O2 and water occupy the 'peroxo hole' above the organic substrate. Here, high-resolution neutron/X-ray crystallographic analysis at room temperature has been integrated with molecular dynamics simulations to investigate the hydration step of the reaction. The joint neutron/X-ray structure of perdeuterated Aspergillus flavus UOX in complex with its 8-azaxanthine (8AZA) inhibitor shows that the catalytic water molecule (W1) is present in the peroxo hole as neutral H2O, oriented at 45° with respect to the ligand. It is stabilized by Thr57 and Asn254 on different UOX protomers as well as by an O-H⋯π interaction with 8AZA. The active site Lys10-Thr57 dyad features a charged Lys10-NH3+ side chain engaged in a strong hydrogen bond with Thr57OG1, while the Thr57OG1-HG1 bond is rotationally dynamic and oriented toward the π system of the ligand, on average. Our analysis offers support for a mechanism in which W1 performs a nucleophilic attack on DHUC5 with Thr57HG1 central to a Lys10-assisted proton-relay system. Room-temperature crystallography and simulations also reveal conformational heterogeneity for Asn254 that modulates W1 stability in the peroxo hole. This is proposed to be an active mechanism to facilitate W1/O2 exchange during catalysis.Spinel iron oxide nanoparticles of different mean sizes in the range 10-25 nm have been prepared by surfactant-free up-scalable near- and super-critical hydro-thermal synthesis pathways and characterized using a wide range of advanced structural characterization methods to provide a highly detailed structural description. The atomic structure is examined by combined Rietveld analysis of synchrotron powder X-ray diffraction (PXRD) data and time-of-flight neutron powder-diffraction (NPD) data. The local atomic ordering is further analysed by pair distribution function (PDF) analysis of both X-ray and neutron total-scattering data. It is observed that a non-stoichiometric structural model based on a tetragonal γ-Fe2O3 phase with vacancy ordering in the structure (space group P43212) yields the best fit to the PXRD and total-scattering data. Detailed peak-profile analysis reveals a shorter coherence length for the superstructure, which may be attributed to the vacancy-ordered domains being smaller than the size ocollinear ordering of the spins in the structure and the magnetic domain sizes to be ∼60-70% of the total nanoparticle sizes. The present study is the first in which mPDF analysis has been applied to magnetic nanoparticles, establishing a successful precedent for future studies of magnetic nanoparticles using this technique.Lipidic cubic phase (LCP) crystallization methods have been essential in obtaining crystals of certain membrane proteins, particularly G-protein-coupled receptors. LCP crystallization is generally optimized across a large number of potential variables, one of which may be the choice of the solubilizing detergent. A better fundamental understanding of the behavior of detergents in the LCP may guide and simplify the detergent selection process. This work investigates the distribution of protein and detergent in LCP using the membrane protein bacteriorhodopsin (bR), with the LCP prepared from highly deuterated monoolein to allow contrast-matched small-angle neutron scattering. EPZ5676 mw Contrast-matching allows the scattering from the LCP bilayer itself to be suppressed, so that the distribution and behavior of the protein and detergent can be directly studied. The results showed that, for several common detergents, the detergent micelle dissociates and incorporates into the LCP bilayer essentially as free detergent monomers.