About seller
The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.Additive engineering is known to be an effective method for inducing a simultaneous effect of enlarging the grain size and surface passivation. As compared to the monovalent halides frequently used as additives, divalent halides are relatively less investigated in the role of additives. In this work, we report effects of alkaline earth metal halides BCl2 (B = Mg, Ca, Sr, Ba) as additives on the opto-electronic properties and photovoltaic performance of FAPbI3 based perovskite solar cells (PSCs). A significant improvement in power conversion efficiency (PCE) from 17.27% to 21.11% is observed by MgCl2 addition in the FAPbI3 precursor solution, while a marginal increment for CaCl2 or BaCl2 and a negative effect for SrCl2 is observed. The lattice constant of cubic FAPbI3 is hardly changed by additives, while the crystallinity is improved by MgCl2. The carrier lifetime increases from 40 ns to 287 ns and the trap density is reduced from 1.08 × 1016 cm-3 to 3.19 × 1015 cm-3 by addition of 5 mol% MgCl2, which is responsible for the enhancement in photovoltaic parameters. The steady-state PCE of the PSC with the MgCl2-additive-treated FAPbI3 measured under continuous illumination at the maximum power point remains unchanged for 1500 s.Reported herein is the development of a novel polystyrene-based resin that we named PanzaGel. The resin was equipped with diethylene glycol-derived cross-linker with the dedicated application to polymer supported glycan synthesis in mind. After investigating its swelling properties and obtaining encouraging data for its chemical and thermal stability we accessed the amenability of PanzaGel to the HPLC-based platform for the automated synthesis. Comparable glycosylation results to those with traditional supports have been obtained in the synthesis of glycans up to pentasaccharide that was obtained in 30% overall yield. The automated synthesis set-up implemented a common analytical autosampler for delivering all reagents for all steps of the glycan synthesis and cleavage.Cycloruthenation is a well known process in organometallic ruthenium chemistry. In this work, we report unprecedented cycloruthenated rhenium bis-arene compounds with planar chirality. In a two-step process, the reaction of acetyl-pyridine with [Re(η6-C6H6)2]+ introduced a pyridinyl-methanol ligand at one of the arene rings. Coordination of [Ru(CO)2Cl2] led to cycloruthenation, and the products were obtained as two diastereomeric pairs of enantiomers. Under basic pH conditions, the two pairs of enantiomers undergo spontaneous and reversible dimerization. The cycloruthenated monomers were fully characterized, and the dimerization process was studied by NMR, IR spectroscopy, and DFT calculations.A high affinity Streptavidin ligand was mined from a DNA-encoded library of non-peptidic oligimers and characterized structurally.The arrangement of multiple single nucleotide polymorphisms (SNPs) in a gene, called a haplotype phase, is increasingly recognized as critical for accurate determination of disease risk and severity. However, conventional toehold-mediated strand displacement reactions are only able to interrogate SNPs, but not phase them since it is not known whether two SNPs in the same copy of the gene (cis) or in different copies of the same gene (trans) will give the same readout. find more While the rational introduction of an enzyme enables haplotype phasing, the complicated and stable secondary structure of long, single-stranded DNA sequences at room temperature limits its use. Complex nucleic acid structures make the hybridization of the probes difficult. Thus, we designed a molecular method to reveal the relative positions of SNPs located 1.4 kb apart in two copies of a gene by employing a competitive toehold probes and sink strategy at an elevated temperature. As such, we have successfully differentiated 20 nM of the 10 possible diplotypes in a long DNA target with two SNP sites located 1.4 kb apart within an hour without any additional amplification step. This offers a promising technology for accurate and fast haplotype phasing of SNPs that are over multiple kilobases away from each other.Negative or zero thermal expansion (NTE or ZTE) of materials is intriguing for controllable thermal expansion. We report a series of orthorhombic α-Cu2-xZnxV2O7 (x = 0, 0.1, 0.2), in which the volumetric coefficients of thermal expansion are successfully tuned from -10.19 × 10-6 K-1 to -1.58 × 10-6 K-1 in the temperature range of 100-475 K by increasing the content of Zn2+. It has been revealed that the transverse vibrations of oxygen bonded with vanadium are dominant in the contraction of the bc plane, leading to the overall volume NTE in α-Cu2V2O7. The introduction of Zn2+ densifies the crystal structure, which is presumed to suppress the space of transverse vibrations and results in the ZTE in α-Cu1.8Zn0.2V2O7. This work presents an effective method to realize ZTE in anisotropic framework systems.Anthracyclines are one of the most studied anticancer drugs approved for medical treatment. The equilibrium constant (K) of the reaction between these drugs with DNA in both in vitro and in vivo experiments lacks consensus. The K values vary from 104 up to 108 M-1, which suggest a 1000-fold error in determining the effective concentration needed to form the drug-DNA complex. Until 2014, only one study by García [J. Phys. Chem. B, 2014, 118, 1288-1295] showed that the binding of anthracycline representative doxorubicin occurs in two reactions. We support this result by brightness analysis at a single molecular level for the four most common anthracyclines doxorubicin, daunorubicin, epirubicin, and idarubicin.A smartphone-based analysis system is favored for point-of-care testing applications. The present work proposes a novel micro-spectroscopy/imaging system comprising a portable spectrometer as an optical sensor and a compact homemade microscope to acquire the image and spectra of micron-scale regions. Protein concentration quantification based on the bicinchoninic acid method was demonstrated with the proposed micro-spectroscopy/imaging system to analyse the spectrometer signals. Morphologies of onion endothelial and human breast cancer cells, used as biological sample models, were characterized to demonstrate the microscopic imaging capacity of the device. The ability to simultaneously obtain morphological and spectral information using the proposed portable device was demonstrated by examining the 10 μm sub-pixels of a smartphone screen. These results highlight the potential for adopting a smartphone-based micro-spectroscopy/imaging system for point-of-care testing.