About seller
A magnetic dispersive micro-solid phase extraction procedure for the determination of the thallium content in waters is presented. The incorporation in the sample (10 mL) of a small amount of graphene-Fe3O4 composite (3.6 mg) in the presence of 10-4 mol L-1 Aliquat 336 at pH 2 results in the complete retention of both thallium(I) and thallium(III). After separation with a magnet, the micro-solid phase recovered is treated with 0.05 mL of a 0.1 mol L-1 sodium ethylenediaminetetracetate solution at pH 9, and the supernatant obtained after application of the magnet is introduced in the electrothermal atomizer of an atomic absorption spectrometer to obtain the signal corresponding to the total thallium content. For speciation, the trivalent form in a second sample aliquot is separated by means of a liquid-liquid extraction stage with chloroform and methyl trioctyl ammonium in the presence of bromide, and the signal corresponding to the monovalent form is obtained, the concentration of thallium(III) being obtained by difference. Phenol Red sodium research buy The enrichment factor is 185, which permits a detection limit as low as 0.01 μg L-1 of the analyte to be achieved. The relative standard deviation for five measurements at the 0.1 μg L-1 thallium level is below 5%. The reliability of the procedure is verified by analysing five certified reference samples for which speciation data are also given.Hexosaminidases (Hexs) as an exoglycosidase participates in the catalytic hydrolysis of non-reducing end of glycoconjugates in the biological system. The fluctuation of Hexs level could cause many hereditary neurodegenerative diseases such as Tay-Sachs and Sandhoff. The Hexs activity is significantly up-regulated in colorectal cancer and kidney injury tissue so that it is particularly important to construct a fluorescent probe with significant signal change to understand its physiological role. In this work, DyOH was selected as fluorophore scaffolds to synthesize probe Hex-1 for detection of Hexs with good water solubility, high specificity, large stokes shift and quick response. Hex-1 can sensitively detect Hexs with the low detection limit (0.025 mU mL-1) in vitro by "naked eye" due to superior spectral properties of DyOH. Furthermore, Hex-1 was not only employed for imaging Hexs in living cells with low toxicity, but also successfully applied to evaluate the fluctuation of Hexs activity during drug induced kindey injury in living HK-2 cells. These results indicated that Hex-1 could be used as a potential image tool to further explore the pathogenesis of kidney disease and cancer.Lysosomes are important subcellular organelles with acidic pH. The change of lysosomal pH can affect the normal function and activity of cells. To conveniently detect and visualize lysosomal pH changes, we designed herein a novel fluorescent probe NIR-Rh-LysopH. The probe is based on a Rhodamine 101 derivative, which was modified to include a fused tetrahydroquinoxaline ring to obtain near-infrared fluorescence and a methylcarbitol moiety to locate the lysosome. Based on the proton-induced spirolactam ring-opening mechanism, NIR-Rh-LysopH showed rapid, selective, sensitive, and reversible near-infrared fluorescence responses around 686 nm (Stokes shift 88 nm) with a pKa value of 5.70. From pH 7.4 to 4.0, about 285 folds of fluorescence enhancement was observed. Cell experiments showed that NIR-Rh-LysopH has low cytotoxicity and excellent lysosome-targeting ability. Moreover, NIR-Rh-LysopH was applied successfully to track lysosomal pH changes induced by drugs (such as chloroquine and dexamethasone), heatstroke, and redox stress. Thus, NIR-Rh-LysopH is very promising for conveniently tracking lysosomal pH changes and studying the related life processes.A hapten-protein conjugate with copper nanoparticles (Hap-Car-BSA@CuNPs) was first synthesized in the present work for the determination of carbaryl. The copper nanoparticles (CuNPs) of the conjugate were used as electrochemical labels in the direct solid-phase competitive determination of carbaryl residues in flour from different crops. The signal was read by linear sweep anodic stripping voltammetry (LSASV) of copper (through the electrochemical stripping of accumulated elemental copper) on a gold-graphite electrode (GGE). To form a recognition receptor layer of monoclonal antibodies against the carbaryl on the surface of the GGE, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-hydroxy-2,5-pyrrolidinedione (NHS) were used as the best covalent cross-linkers. The concentrations of the antibodies and the Hap-Car-BSA@CuNPs conjugate were optimized for carbaryl detection by the electrochemical immunosensor. The electrochemical immunosensor can be used for highly sensitive determination of carbaryl residues in flour samples in the concentration range 0.8-32.3 μg·kg-1, with a limit of detection 0.08 μg·kg-1. The present work paves the path for a novel method for monitoring carbaryl in other food products, drinks, and soil samples.Spike- and blank-based procedures were applied to estimate the detection limits (DLs) for example analytes from inorganic and organic methods for water samples to compare with the U.S. Environmental Protection Agency's (EPA) Method Detection Limit (MDL) procedures (revisions 1.11 and 2.0). The multi-concentration spike-based procedures ASTM Within-laboratory Critical Level (DQCALC) and EPA's Lowest Concentration Minimum Reporting Level were compared in one application, with DQCALC further applied to many methods. The blank-based DLs, MDLb99 (99th percentile) or MDLbY (= mean blank concentration + s × t), estimated using large numbers (>100) of blank samples often provide DLs that better approach or achieve the desired ≤1% false positive risk level compared to spike-based DLs. For primarily organic methods that do not provide many uncensored blank results, spike-based DQCALC or MDL rev. 2.0 are needed to simulate the blank distribution and estimate the DL. DQCALC is especially useful for estimating DLs for multi-analyte methods having very different analyte response characteristics. Time series plots of DLs estimated using different procedures reveal that DLs are dependent on the applied procedure, should not be expected to be static over time, and seem best viewed as falling over a range versus being a single value. Use of both blank- and spike-based DL procedures help inform this DL range. Data reporting conventions that censor data at a threshold and report "less than" that threshold concentration as the reporting level have unknown and potentially high false negative risk. The U.S. Geological Survey National Water Quality Laboratory's Laboratory Reporting Level (LRL) convention (applied primarily to organic methods) attempts to simultaneously minimize both the false positive and false negative risk when less then LRL is reported and data between DL and the higher LRL are allowed to be reported.