About seller
To the best of our knowledge, this is the first reported observation of the antiviral activity of H. tuberculatum extract against plant viral infections. Finally, the results obtained suggest that H. tuberculatum WPE can be considered a promising source of both antifungal and antiviral substances for practical use and for developing plant-derived compounds for the effective management of plant diseases.The spectrum of Internet of Things (IoT) applications is exponentially growing, driving the demand for better energy performance metrics. In conjunction, Low Power Wide Area Networks (LPWAN) have evolved as long-range connectivity enabler with low management cost. The integration of LPWAN communication assists in reliable IoT operation with extended lifetime. Notable LPWAN technologies that contend for many of the IoT applications are LoRaWAN, DASH7, Sigfox, and NB-IoT. Most of the end-devices such as sensors and actuators are battery powered, therefore investigating energy consumption becomes crucial. To estimate the consumed power, it is important to analyze the energy consumption in wireless communication. This paper describes an empirical evaluation of energy consumption for LPWAN wireless technologies. We measure the current consumption of LoRaWAN, DASH7, Sigfox, and NB-IoT and derive the respective battery lifetime. These measurements help to quantify the energy performance of different protocols. We observe that LoRaWAN and DASH7 are more energy efficient when compared to Sigfox and NB-IoT. Finally, a case study on energy consumption is done on precision agriculture in the greenhouse, showing that battery lifetime in real applications can drop significantly from the ideal case. These results can be used for increasing the effectiveness of the IoT application by selecting the right technology and battery capacity.Tree nuts have become popular snacks due to their attributed benefits in the health state. Nevertheless, their susceptibility to fungal contamination lead to the occurrence of potentially dangerous mycotoxins. ML323 nmr Hence, the aim of this work was to evaluate the presence of mycotoxins in ready-to-eat almonds, walnuts, and pistachios from Italian markets. The most relevant mycotoxin found in almonds was α-zearalanol in 18% of samples (n = 17) ranging from 3.70 to 4.54 µg/kg. Walnut samples showed frequent contamination with alternariol, present in 53% of samples (n = 22) at levels from 0.29 to 1.65 µg/kg. Pistachios (n = 15) were the most contaminated commodity, with β-zearalenol as the most prevalent toxin present in 59% of samples ranging from 0.96 to 8.60 µg/kg. In the worst-case scenario, the exposure to zearalenone-derived forms accounted for 15.6% of the tolerable daily intake, whereas it meant 12.4% and 21.2% of the threshold of toxicological concern for alternariol and alternariol monomethyl-ether, respectively. The results highlighted the extensive presence of Alternaria toxins and zearalenone-derived forms, scarcely studied in ready-to-eat tree nut products, highlighting the necessity to include these mycotoxins in analytical methods to perform more realistic risk assessments.Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP-a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.Systemic sclerosis (SSc) is a multi-system connective tissue disease characterized by the increased deposition of extracellular matrix proteins such as collagen and fibronectin. Although the pathogenesis is not completely understood, a number of studies suggest that free radicals could be the major contributors to the disease. Indeed, different studies demonstrated how oxidative stress could contribute to the fibrotic process activation at the level of the skin and visceral organs. Emerging evidences highlight the beneficial effects of sildenafil, a phosphodiesterase type 5 inhibitor (PDE5i), which protects different cell lines from the cell damage induced by reactive oxygen species (ROS). These data make sildenafil a good candidate for therapeutic treatment aimed to protect biological macromolecules against oxidative damage, thus preserving cell viability. The purpose of this study was to evaluate the sensitivity of SSc dermal fibroblasts to an oxidative insult and the ability for sildenafil to prevent/reduce the DNA damage due to ROS action. Additionally, we evaluated the capacity for sildenafil to influence redox homeostasis and cytotoxicity, as well as cell proliferation and cell cycle progression. We demonstrated that SSc fibroblasts have an increased sensitivity to a pro-oxidant environment in comparison to healthy controls. The sildenafil treatment reduced ROS-induced DNA damage, counteracted the negative effects of ROS on cell viability and proliferation, and promoted the activity of specific enzymes involved in redox homeostasis maintenance. To our knowledge, in this report, we demonstrate, for the first time, that sildenafil administration prevents ROS-induced instability in human dermal fibroblasts isolated by SSc patients. These results expand the use of PDE5i as therapeutic agents in SSc by indicating a protective role in tissue damage induced by oxidative insult.