About seller
However, we found no difference between migratory and non-migratory species when evaluating prevalence separately for Plasmodium and Haemoproteus, or for the richness of Plasmodium lineages. Nevertheless, our results indicate that migratory behaviour is associated with an infection cost, namely a higher prevalence and greater variety of haemosporidian parasites.Giardia intestinalis is an enteric pathogen with an extremely modified membrane trafficking system, lacking canonical compartments such as the Golgi, endosomes, and intermediate vesicle carriers. By comparison the fornicate relatives of Giardia possess greater endomembrane system complexity. In eukaryotes, the ADP ribosylation factor (ARF) GTPase regulatory system proteins, which consist of the small GTPase ARF1, and its guanine exchange nucleotide factors (GEFs) and GTPase activating proteins (GAPs), coordinate temporal and directional trafficking of cargo vesicles by recognizing and interacting with heterotetrameric coat complexes at pre-Golgi and post-Golgi interfaces. To understand the evolution of this regulatory system across the fornicate lineage, we have performed comparative genomic and phylogenetic analyses of the ARF GTPases, and their regulatory GAPs and GEFs in fornicate genomes and transcriptomes. Prior to our analysis of the fornicates, we first establish that the ARF GAP sub-family ArfGAP with dual PH domains (ADAP) is sparsely distributed but present in at least four eukaryotic supergroups and thus was likely present in the Last Eukaryotic Common Ancestor (LECA). Next, our collective comparative genomic and phylogenetic investigations into the ARF regulatory proteins in fornicates identify a duplication of ARF1 GTPase yielding two paralogues of ARF1F proteins, ancestral to all fornicates and present in all examined isolates of Giardia. However, the ARF GEF and ARF GAP complement is reduced compared with the LECA. This investigation shows that the system was significantly streamlined prior to the fornicate ancestor but was not further reduced concurrent with a transition into a parasitic lifestyle.We conducted a transcriptomic and small RNA analysis of infective juveniles (IJs) from three behaviourally distinct Steinernema species. Substantial variation was found in the expression of shared gene orthologues, revealing gene expression signatures that correlate with behavioural states. Ninety-seven percent of predicted microRNAs are novel to each species. Surprisingly, our data provide evidence of a new family of non-coding transcripts that overlap with neuropeptide gene loci, which are predicted to influence microRNA regulation of neuropeptide genes. These data suggest that differences in neuropeptide gene expression, isoform variation, and small RNA interactions could contribute to behavioural differences within the Steinernema genus.Recent work is revealing neural correlates of a leading theory of motor control. By linking an elegant series of behavioral experiments with neural inactivation in macaques with computational models, a new study shows that premotor and parietal areas can be mapped onto a model for optimal feedback control.Cell motility is critical for animal biology, but its evolutionary history is unclear. A new study reports blebbing motility - a form of cell crawling - in the closest living relative of animals, suggesting that the unicellular ancestors of animals could crawl.The retrospective nature of dream reports represents a challenge to the study of dreams. Two-way, real-time communication between researchers and lucid dreamers immersed in REM sleep offers a new and exciting window into the study of dreams and dreaming.Animals that communicate by vocal means must make their own calls salient against a background of environmental noise. A new study of green tree frogs demonstrates that input from the lungs to the middle ear reduces interfering noise and thus enhances call detection.Nature faces the challenge of stably attaching soft muscles to a stiff skeleton. A new study combines live imaging and fly genetics to reveal that mechanical tension and a putative intracellular chaperone assist in assembling the gigantic extracellular matrix protein Dumpy at fly tendon-skeleton interfaces.Fish use the highly stereotyped lateral line system to swim against a current. New research reveals that the order of the lateral line system is less important than brain response asymmetries for achieving this navigational feat.Arbuscular mycorrhizae (AM) are the most frequent symbioses of land plants. By reisolating a long-lost fungus from nature, a new study cracks the genomics of an enigmatic fungal-cyanobacterial partnership and reestablishes a valuable model for understanding the AM symbiosis.Despite intensive research efforts, biologists still do not have a clear picture of the brain circuitry that controls behavioural arousal. However, new research has identified a novel septo-hypothalamic circuit that functions to promote wakefulness.Extra centrosomes are linked to cancer-associated errors in cell division, metastasis and signaling. A new study reveals that centrosome amplification disrupts lysosome function, leading to the release of small extracellular vesicles and to invasive activity in pancreatic cells.A recent study using new holographic optogenetic stimulation technology has provided direct evidence that hippocampal place cell activity is sufficient to drive memory and navigation-related behaviors.Cleistogamous flowers never fully bloom and are thought to have evolved as a means to promote self-fertilisation. A new study reveals that this curious feature arose more frequently in flowers with bilateral symmetry.'True navigation' indicates that animals can move toward a destination without using familiar landmarks. Migratory birds apparently achieve this by extrapolating their position from geomagnetic cues. What this ability implies about the function and representation of animals' large-scale maps remains uncertain.Redox regulation allows phytoplankton to monitor and stabilize metabolic pathways under changing conditions1. In plastids, the thioredoxin (TRX) system is linked to photosynthetic electron transport and fine tuning of metabolic pathways to fluctuating light levels. Expansion of the number of redox signal transmitters and their protein targets, as seen in plants, is believed to increase cell robustness2. In this study, we searched for genes related to redox regulation in the photosynthetic amoeba Paulinella micropora KR01 (hereafter, KR01). The genus Paulinella includes testate filose amoebae, in which a single clade acquired a photosynthetic organelle, the chromatophore, from an alpha-cyanobacterial donor3. selleck chemicals llc This independent primary endosymbiosis occurred relatively recently (∼124 million years ago) when compared to Archaeplastida (>1 billion years ago), making photosynthetic Paulinella a valuable model for studying the early stages of primary endosymbiosis4. Our comparative analysis demonstrates that this lineage has evolved a TRX system similar to other algae, relying, however, on genes with diverse phylogenetic origins (including the endosymbiont, host, bacteria, and red algae).