About seller
Due to the limited number of organ donors, 3D printing of organs is a promising technique. Tissue engineering is increasingly using xenogeneic material for this purpose. This study was aimed at assessing the safety of decellularized porcine pancreas, together with the analysis of the risk of an undesirable immune response. We tested eight variants of the decellularization process. We determined the following impacts rinsing agents (PBS/NH3·H2O), temperature conditions (4 °C/24 °C), and the grinding method of native material (ground/cut). To assess the quality of the extracellular matrix after the completed decellularization process, analyses of the following were performed DNA concentration, fat content, microscopic evaluation, proteolysis, material cytotoxicity, and most importantly, the Triton X-100 content. Our analyses showed that we obtained a product with an extremely low detergent content with negligible residual DNA content. The obtained results confirmed the performed histological and immuno-fluorescence staining. Moreover, the TEM microscopic analysis proved that the correct collagen structure was preserved after the decellularization process. Based on the obtained results, we chose the most favorable variant in terms of quality and biology. The method we chose is an effective and safe method that gives a chance for the development of transplant and regenerative medicine.The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm-1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8-30.9%), followed by laboratory conditions (16.0-23.3%), and lowest in Russia (13.2-22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates.The aim of this systematic review and meta-analysis was to analyze and compare the survival rate and prosthetic and sinus complications of zygomatic dental implants for the rehabilitation of the atrophic edentulous maxilla. We conducted a systematic literature review and meta-analysis, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, of clinical studies that evaluated the survival rate and prosthetic and sinus complications of zygomatic dental implants for the rehabilitation of the atrophic edentulous maxilla. Four databases were consulted during the literature search Pubmed-Medline, Scopus, Embase, and Web of Science. After eliminating duplicate articles and applying the inclusion criteria, 46 articles were selected for the qualitative analysis and 32 for the quantitative analysis. Four randomized controlled trials, 19 prospective clinical studies, 20 retrospective studies, and 3 case series were included in the meta-analysis. Conventional dental im to zygomatic dental implants suggest the use of zygomatic dental implants for the rehabilitation of the atrophic edentulous maxilla.The high survival rate and low prosthetic and sinus complications related to zygomatic dental implants suggest the use of zygomatic dental implants for the rehabilitation of the atrophic edentulous maxilla.An ever-growing number of insect genomes is being sequenced across the evolutionary spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for reaping the full benefits of this sequencing. Driven by developments in sequencing technologies and in both empirical and computational discovery strategies, the past few decades have witnessed dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge. We review here the methods being used to identify CRMs in both model and non-model insect species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources can be paired together in a powerful combination to facilitate insect regulatory annotation over a broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.Cytosolic 5'-nucleotidase II (cN-II) is an allosteric catabolic enzyme that hydrolyzes IMP, GMP, and AMP. The enzyme can assume at least two different structures, being the more active conformation stabilized by ATP and the less active by inorganic phosphate. learn more Therefore, the variation in ATP concentration can control both structure and activity of cN-II. In this paper, using a capillary electrophoresis technique, we demonstrated that a partial silencing of cN-II in a pulmonary carcinoma cell line (NCI-H292) is accompanied by a decrease in adenylate pool, without affecting the energy charge. We also found that cN-II silencing decreased proliferation and increased oxidative metabolism, as indicated by the decreased production of lactate. These effects, as demonstrated by Western blotting, appear to be mediated by both p53 and AMP-activated protein kinase, as most of them are prevented by pifithrin-α, a known p53 inhibitor. These results are in line with our previous observations of a shift towards a more oxidative and less proliferative phenotype of tumoral cells with a low expression of cN-II, thus supporting the search for specific inhibitors of this enzyme as a therapeutic tool for the treatment of tumors.