About seller
Leaflet thickening, fibrosis, and hardening are early pathological features of calcific aortic valve disease (CAVD). An inadequate understanding of the resident aortic valve cells involved in the pathological process may compromise the development of therapeutic strategies. We aim to construct a pattern of the human aortic valve cell atlas in healthy and CAVD clinical specimens, providing insight into the cellular origins of CAVD and the complex cytopathological differentiation process. Approach and Results We used unbiased single-cell RNA sequencing for the high-throughput evaluation of cell heterogeneity in 34 632 cells isolated from 6 different human aortic valve leaflets. Cellular experiments, in situ localization, and bulk sequencing were performed to verify the differences between normal, healthy valves and those with CAVD. By comparing healthy and CAVD specimens, we identified 14 cell subtypes, including 3 heterogeneous subpopulations of resident valve interstitial cells, 3 types of immune-derived cells, 2 types of valve endothelial cells, and 6 novel valve-derived stromal cells found particularly in CAVD leaflets. Combining additional verification experiments with single-cell transcriptome profiling provided evidence of endothelial to mesenchymal transition involved in lesion thickening of the aortic valve leaflet. Our findings deconstructed the aortic valve cell atlas and suggested novel functional interactions among resident cell subpopulations. Our findings may provide insight into future targeted therapies to prevent CAVD.Our findings deconstructed the aortic valve cell atlas and suggested novel functional interactions among resident cell subpopulations. Our findings may provide insight into future targeted therapies to prevent CAVD. Enhancement of LCAT (lecithincholesterol acyltransferase) activity has possibility to be beneficial for atherosclerosis. To evaluate this concept, we characterized our novel, orally administered, small-molecule LCAT activator DS-8190a, which was created from high-throughput screening and subsequent derivatization. We also focused on its mechanism of LCAT activation and the therapeutic activity with improvement of HDL (high-density lipoprotein) functionality. Approach and Results DS-8190a activated human and cynomolgus monkey but not mouse LCAT enzymes in vitro. DS-8190a was orally administered to cynomolgus monkeys and dose dependently increased LCAT activity (2.0-fold in 3 mg/kg group on day 7), resulting in HDL cholesterol elevation without drastic changes of non-HDL cholesterol. Atheroprotective effects were then evaluated using × mice fed a Western diet for 8 weeks. DS-8190a treatment achieved significant reduction of atherosclerotic lesion area (48.3% reduction in 10 mg/kg treatment group). Further addition, this compound proves that a small-molecule direct LCAT activator can achieve HDL-C elevation in monkey and reduction of atherosclerotic lesion area with enhanced HDL function in rodent. In this work, we have sought to define growth factor requirements and the signaling basis for different stages of human vascular morphogenesis and maturation. Approach and Results Using a serum-free model of endothelial cell (EC) tube morphogenesis in 3-dimensional collagen matrices that depends on a 5 growth factor combination, SCF (stem cell factor), IL (interleukin)-3, SDF (stromal-derived factor)-1α, FGF (fibroblast growth factor)-2, and insulin (factors), we demonstrate that VEGF (vascular endothelial growth factor) pretreatment of ECs for 8 hours (ie, VEGF priming) leads to marked increases in the EC response to the factors which includes; EC tip cells, EC tubulogenesis, pericyte recruitment and proliferation, and basement membrane deposition. VEGF priming requires VEGFR2, and the effect of VEGFR2 is selective to the priming response and does not affect factor-dependent tubulogenesis in the absence of priming. Key molecule and signaling requirements for VEGF priming include RhoA, Rock1 (Rho-kinase), Pming step, which can activate ECs to respond to downstream factors that are necessary to form branching tube networks with associated mural cells. Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1 ) as compared with WT (wild type; Csf1 ) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1 mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions e cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis. Subjects with low levels of HDL (high-density lipoprotein) and ApoA-1 (apolipoprotein A-1) have increased risk to develop type 2 diabetes. STC-15 price HDL levels are an independent predictor of β-cell function and positively modulate it. Type 2 diabetes is characterized by defects in both β and α-cell function, but the effect of HDL and ApoA1 on α-cell function is unknown. Approach and Results We observed a significant negative correlation ( =-0.422, <0.0001) between HDL levels and fasting glucagon in a cohort of 132 Italian subjects. In a multivariable regression analysis including potential confounders such as age, sex, BMI, triglycerides, total cholesterol, fasting and 2-hour postload glucose, and fasting insulin, the association between HDL and fasting glucagon remained statistically significant (β=-0.318, =0.006). CD1 mice treated with HDL or ApoA-1 for 3 consecutive days showed a 32% ( <0.001) and 23% ( <0.05) reduction, respectively, in glucagon levels following insulin-induced hypoglycemia, compared with controls.