About seller
The development of practical C-H/C-H coupling reactions remains a challenging yet appealing synthetic venture because it circumvents the need to prefunctionalize both coupling partners for the generation of C-C bonds. Herein we report a cyclative C(sp3)-H/C(sp2)-H coupling reaction of free aliphatic acids enabled by a cyclopentane-based mono-N-protected β-amino acid ligand. This reaction uses inexpensive sodium percarbonate (Na2CO3·1.5H2O2) as the sole oxidant and generates water as the only byproduct. selleck A range of biologically important scaffolds, including tetralins, chromanes, and indanes, can be easily prepared by this protocol. Finally, the synthetic application of this methodology is demonstrated by the concise total synthesis of (±)-russujaponol F in a four-step sequence starting from readily available phenylacetic acid and pivalic acid through sequential functionalizations of four C-H bonds.The aggregation of a dipeptide, l-leucine-glycine (Leu-Gly), at 100 mmol dm-3 has been observed in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)-water and 2-propanol (2-PrOH)-water solvents at various alcohol mole fractions, xA, using the dynamic light scattering technique and molecular dynamics (MD) simulations. Leu-Gly was dissolved into the HFIP solvents at the concentration over the entire xA range, while the dipeptide was not dissolved in the 2-PrOH solvents above xA = 0.6. Interestingly, the MD snapshots showed different shapes of Leu-Gly aggregates in the HFIP and 2-PrOH solvents. A linear-shaped aggregate forms in the former; in contrast, a spherical-shaped aggregate is generated in the latter. The solvation structure of each moiety of Leu-Gly in the HFIP and 2-PrOH solvents was observed using experimental and theoretical techniques,1H and 13C NMR, IR, and 19F-1H HOESY measurements and MD simulations. These results gave us the reasons for the different shapes of Leu-Gly aggregates in both solvents. In the HFIP solvents, most of the moieties of the dipeptide are easily solvated by HFIP. This induces the elongated structure of Leu-Gly, leading to the electrostatic interaction between the N- (NH3+ group) and C- (COO- group) terminals of dipeptide molecules. On the other hand, in the 2-PrOH solvents, water molecules that initially solvate the moieties of Leu-Gly, such as the N- and C-terminals and the peptide linkage, are not easily eliminated even as the xA is close to 0.6. The water molecules can bridge such moieties of Leu-Gly to form spherical-shaped aggregates. The diffusion coefficients of Leu-Gly in both alcohol-water binary solvents were experimentally determined by NMR DOSY to estimate the geometries of the aggregates in the solvents. The sizes of Leu-Gly aggregates obtained by DOSY for both solvent systems were consistent with those estimated from the MD snapshots.Targeted protein degradation has emerged as a new paradigm to manipulate cellular proteostasis. Proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit an E3 ligase to a target protein of interest, promoting its ubiquitination and subsequent degradation. Here, we report the development of antibody-based PROTACs (AbTACs), fully recombinant bispecific antibodies that recruit membrane-bound E3 ligases for the degradation of cell-surface proteins. We show that an AbTAC can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43. AbTACs represent a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules.Cannabis-based products are increasingly being used to treat refractory childhood epilepsies such as Dravet syndrome. Cannabis contains at least 140 terpenophenolic compounds known as phytocannabinoids. These include the known anticonvulsant compound cannabidiol (CBD) and several molecules showing emergent anticonvulsant properties in animal models. Cannabichromene (CBC) is a phytocannabinoid frequently detected in artisanal cannabis oils used in the community by childhood epilepsy patients. Here we examined the brain and plasma pharmacokinetic profiles of CBC, cannabichromenic acid (CBCA), cannabichromevarin (CBCV), and cannabichromevarinic acid (CBCVA) following intraperitoneal administration in mice. The anticonvulsant potential of each was then tested against hyperthermia-induced seizures in the Scn1a+/- mouse model of Dravet syndrome. All phytocannabinoids within the CBC series were readily absorbed and showed substantial brain penetration (brain-plasma ratios ranging from 0.2 to 5.8). Anticonvulsant efficacy was evident with CBC, CBCA, and CBCVA, each significantly increasing the temperature threshold at which Scn1a+/- mice had a generalized tonic-clonic seizure. We synthesized a fluorinated derivative of CBC (5-fluoro-CBC), which showed improved brain penetration relative to the parent CBC molecule but not any greater anticonvulsant effect. Since CBC and derivatives are anticonvulsant in a model of intractable pediatric epilepsy, they may constitute part of the mechanism through which artisanal cannabis oils are anticonvulsant in patients.The quest for new and unique polynuclear metal-oxocarboxylate clusters has led to a continual boom of highly connected and robust metal-organic frameworks (MOFs) with intriguing properties. In this work, by virtue of a highly specific coordination-driven cluster rearrangement process of a presynthesized trinuclear zirconocene-based tripodal metallo-pyridine ligand, we realized the preparation of the first two 2D heterometallic MOFs incorporating unprecedented Johnson-type (J51) nonanuclear Zr-oxocarboxylate clusters, as unambiguously uncovered by single-crystal X-ray crystallography. The resultant two charged frameworks feature counteranion-dependent 3,6-c kgd (JMOF-1) and 3,12-c 3,12L4 (JMOF-2) nets that are formed by octahedral and hexagonal prismatic Zr9 molecular building blocks (MBBs), respectively. In addition, JMOF-2 shows promise for the purification of acetylene from CO2 and C2H4, with IAST selectivities of about 12 and 8, respectively, at 298 K and 1 bar, as well as remarkable iodine capture capacity of up to 2.