fangchest9
fangchest9
0 active listings
Last online 1 day ago
Registered for 2+ days
Bende, Yobe, Nigeria
513631Show Number
Send message All seller items (0) www.selleckchem.com/products/jnj-a07.html
About seller
The tung tree is an important woody oil tree species. Tung oil extracted from the tung fruit seeds is used in the manufacture of environmentally friendly paint. This study investigated the effects of the application of brassinolide (BR) under different temperature conditions on the chlorophyll content, photosynthesis, chlorophyll fluorescence, leaf structure, and chloroplast ultrastructure in Vernicia fordii and Vernicia montana. The conditions used were 8°C-Control (low temperature and no BR), 8°C-BR (low temperature and BR application), 28°C-Control (normal temperature and no BR), and 28°C-BR (normal temperature and BR application), and effects were monitored from 5 to 15 days after the treatments (DAT). The results showed that the low temperature treatment (8°C-Control) significantly reduced the net photosynthetic rate (Pn ), stomatal conductance (Gs ), maximum fluorescence (Fm ), maximum photochemical efficiency (F v/F m), and actual photochemical and quantum efficiency (Φ PSII ) compared to the control cructure of plant leaves and destroying the integrity and function of the chloroplast. To prevent this, external application of BR to tung tree seedlings could enhance the photosynthetic potential of tung trees by maintaining the stability of the leaf structure, morphology, and function, and alleviating the damage caused by cold injury. The results also showed that V. fordii seedlings are more resistant to low temperatures than V. montana seedlings. Copyright © 2020 Zhang, Lu, Gu, Zhang, Li and Li.As sessile organisms, plants face a variety of environmental challenges. Their reproduction and survival depend on their ability to adapt to these stressors, which include water, heat stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in programmed cell death and decreased viability, as well as reduced productivity in the case of crop plants. The growth and development of plants are maintained by meiosis and mitosis as well as endoreduplication, during which DNA replicates without cytokinesis, leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages (G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M check point, that ensure normal cell division. Progression through these checkpoints involves the activity of cyclin-dependent kinases and their regulatory subunits known as cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to dynamic environmental conditions. In this review, we summarize recent advances in our understanding of cell cycle regulation in plants, with a focus on the molecular interactions of cell cycle machinery in the context of stress tolerance. Copyright © 2020 Qi and Zhang.Brassica napus (B. napus) is the world's most widely grown temperate oilseed crop. Although breeding for human consumption has led to removal of erucic acid from refined canola oils, there is renewed interest in the industrial uses of erucic acid derived from B. napus, and there is a rich germplasm available for use. Here, low- and high-erucic acid accessions of B. napus seeds were examined for the distribution of erucic acid-containing lipids and the gene transcripts encoding the enzymes involved in pathways for its incorporation into triacylglycerols (TAGs) across the major tissues of the seeds. In general, the results indicate that a heterogeneous distribution of erucic acid across B. napus seed tissues was contributed by two isoforms (out of six) of FATTY ACYL COA ELONGASE (FAE1) and a combination of phospholipiddiacylglycerol acyltransferase (PDAT)- and diacylglycerol acyltransferase (DGAT)-mediated incorporation of erucic acid into TAGs in cotyledonary tissues. An absence of the expression of these two FAE1 isoforms accounted for the absence of erucic acid in the TAGs of the low-erucic accession. Copyright © 2020 Lu, Aziz, Sturtevant, Chapman and Guo.WRKY protein is a unique transcription factor (TF) and plays an important role in the physiological processes of various stress responses and plant development. In this research, we obtained a WRKY TF gene from soybean by homologous cloning, and named it GmWRKY45. GmWRKY45 is a nuclear protein containing a highly conserved WRKY domain and a C2H2 zinc finger structure, and mainly expressed in roots, flowers and pods of soybean. The quantitative reverse transcription-PCR showed that GmWRKY45 was induced by phosphate starvation and salt stress. As compared with the wild type (WT), overexpression of GmWRKY45 increased the adaptability of transgenic Arabidopsis to phosphate starvation, which might be related to the enhancement of lateral root development. The phosphorus concentration, fresh weight and dry weight of GmWRKY45-overexpressing Arabidopsis were higher than those of WT under Pi-sufficient or Pi-deficient condition. Meantime, the expression of phosphate-responsive genes was affected in transgenic Arabidopsis. Furthermore, GmWRKY45 improved the salt tolerance and changed fertility of transgenic Arabidopsis. Under salt stress, we found the survival rate and soluble sugar content of transgenic Arabidopsis were significantly higher than those of WT. In a conventional soil pot experiment, the transgenic Arabidopsis produced shorter silique, less and larger seeds than WT, these might be due to partial abortion of pollens. JNJ-A07 mw The overall results showed that GmWRKY45 was not only involved in response to abiotic stress but also related to fertility, suggested that GmWRKY45 had an elaborate regulatory system in plants. Copyright © 2020 Li, Liu, Ruan, Zhang, Xie, Gai and Yang.Gene regulation involves the orchestrated action of multiple regulators to fine-tune the expression of genes. Hierarchical interactions and co-regulation among regulators are commonly observed in biological systems, leading to complex regulatory networks. Small RNA (sRNAs) have been shown to be important regulators of gene expression due to their involvement in multiple cellular processes. In plants, microRNA (miRNAs) and phased small interfering RNAs (phasiRNAs) correspond to two well-characterized types of sRNAs involved in the regulation of posttranscriptional gene expression, although information about their targets and interactions with other gene expression regulators is limited. We describe an extended sRNA-mediated regulatory network in Arabidopsis thaliana that provides a reference frame to understand sRNA biogenesis and activity at the genome-wide level. This regulatory network combines a comprehensive evaluation of phasiRNA production and sRNA targets supported by degradome data. The network includes ~17% of genes in the A.

fangchest9's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register