About seller
One of the main challenges in cancer surgery is to ensure the complete excision of the tumour while sparing as much healthy tissue as possible. Histopathology, the gold-standard technique used to assess the surgical margins on the excised tissue, is often impractical for intra-operative use because of the time-consuming tissue cryo-sectioning and staining, and availability of histopathologists to assess stained tissue sections. Raman micro-spectroscopy is a powerful technique that can detect microscopic residual tumours on ex vivo tissue samples with accuracy, based entirely on intrinsic chemical differences. (R,S)-3,5-DHPG solubility dmso However, raster-scanning Raman micro-spectroscopy is a slow imaging technique that typically requires long data acquisition times wich are impractical for intra-operative use. Selective-sampling Raman imaging overcomes these limitations by using information regarding the spatial properties of the tissue to reduce the number of Raman spectra. This paper reviews the latest advances in selective-sampling Raman techniques and applications, mainly based on multimodal optical imaging. We also highlight the latest results of clinical integration of a prototype device for non-melanoma skin cancer. These promising results indicate the potential impact of Raman spectroscopy for providing fast and objective assessment of surgical margins, helping surgeons ensure the complete removal of tumour cells while sparing as much healthy tissue as possible.Processing induced structural changes of whole foods for the regulation of the colonic fermentation rate and microbiota composition are least understood and often overlooked. In the present study, intact cotyledon cells from pinto beans were isolated as a whole pulse food model and subjected to a series of processing temperatures to modulate the structure, most dominantly the cell wall permeability. The cell wall permeability, observed with the diffusion of fluorescently labeled dextran (FITC-dextran), was increased as a function of the hydrothermal temperature, which is in line with the rise in the in vitro fecal fermentation rate and production of short-chain fatty acids (SCFAs) from the pinto bean cells. Further, the abundance of beneficial microbiota, such as Roseburia, Lachnospiraceae, Bacteroides, and Coprococcus, were significantly higher for cells processed at 100 °C compared to the 60 °C-treated ones. We conclude that cell wall provides an effective barrier for the microbial fermentation of intact cells. With an increase in cell wall permeability, microbes and/or microbial enzymes have easier access to intracellular starch for fermentation, leading to an increase in the production of metabolites and the abundance of beneficial microbes. Thus, desired colonic fermentation profiles can be achieved with the controlled processing of whole foods for enhanced gut health.Chiral drugs are drugs with chiral or asymmetric centres in their molecular structure. Different enantiomers of the same chiral drug have noticeably different pharmacological activities and pharmacokinetic properties. However, its distinction has been perplexing scholars for many years in the qualitative and quantitative detection of antagonistic drugs. Conventional detection methods, such as polarimetry, circular dichroism, and high-performance liquid chromatography, are time consuming, cause sample loss and have cumbersome operations, and they can be applied only to the sampling method. In this paper, we propose a fast, accurate, qualitative and quantitative method for the study of chiral drugs based on linearly polarized terahertz (THz) spectroscopy and imaging technology. Taking ibuprofen as an example, based on the THz absorption spectra of the enantiomers RS-ibuprofen, (R)-(-)-ibuprofen, and (S)-(+)-ibuprofen, their characteristic peak frequencies, peak amplitude differences and peak area differences were extracted to qualitatively and quantitatively distinguish and identify the three substances. THz spectral imaging provides more intuitive results than those obtained from previous methods. In quantitative identification, the stability and detection accuracy of THz spectroscopy are much greater than those of Raman spectroscopy (88.8-99.8% vs. 21.42-94.62%, respectively). The qualitative recognition accuracy was 100%, and the quantitative recognition standard deviation was less than 0.01, and it is also a non-destructive testing method. Furthermore, the above method combined with principal component analysis (PCA) and the support vector machine (SVM) neural network classification algorithm was applied to the analysis of other chiral drugs. These results are significant for the rapid, accurate and non-destructive identification of chiral drugs.Scar tissue removal combined with biomaterial implantation is considered an effective measure to repair chronic transected spinal cord injury (SCI). However, whether more scar tissue removal surgeries could affect the treatment effects of biomaterial implantation still needs to be explored. In this study, we performed the first scar tissue removal surgery in the 3rd month and the second in the 6th month after completely removing 1 cm of spinal tissue in canines. We found that Taxol-modified linear ordered collagen scaffold (LOCS + Taxol) implantation could promote axonal regeneration, neurogenesis, and electrophysiological and functional recovery only in canines at the first scar tissue removal surgery, but not in canines at the second scar tissue removal surgery. Interestingly, we found that more endogenous neural stem cells (NSCs) around the injured site could be activated in canines with the first rather than the second scar tissue removal. Furthermore, we demonstrated that Taxol could promote the neuronal differentiation of NSCs in the myelin inhibition microenvironment through the p38 MAPK signaling pathway in vitro. Therefore, we speculated that endogenous NSC activation by the first scar tissue removal surgery and its further differentiation into neurons induced by Taxol may contribute to functional recovery in canines. Together, LOCS + Taxol implantation in combination with the first scar tissue removal provides a promising therapy for chronic long-distance transected SCI repair with the help of scar tissue removal activated endogenous NSCs.