About seller
NOD-like receptor (NLR) family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in inflammation-associated diseases such as multiple sclerosis, Parkinson's disease, and stroke. Targeting the NLRP3 inflammasome is beneficial to these diseases, but few NLRP3 inflammasome-selective inhibitors are identified to date. Essential oils (EOs) are liquid mixtures of volatile and low molecular-weight organic compounds extracted from aromatic plants, which show various pharmacological activities, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory properties. In this study we screened active ingredients from essential oils, and identified 1,2,4-trimethoxybenzene (1,2,4-TTB) as a selective NLRP3 inflammasome inhibitor. We showed that 1,2,4-TTB (1 mM) markedly suppressed nigericin- or ATP-induced NLRP3 inflammasome activation, thus decreased caspase-1 activation and IL-1β secretion in immortalized murine bone marrow-derived macrophages (iBMDMs) and in primary mouse microglia. Moreover, 1,2,4-TTB specifically inhibited the activation of NLRP3 inflammasome without affecting absent in melanoma 2 (AIM2) inflammasome activation. We further demonstrated that 1,2,4-TTB inhibited oligomerization of the apoptosis-associated speck-like protein containing a CARD (ASC) and protein-protein interaction between NLRP3 and ASC, thus blocking NLRP3 inflammasome assembly in iBMDMs and in primary mouse macrophages. In mice with experimental autoimmune encephalomyelitis (EAE), administration of 1,2,4-TTB (200 mg · kg-1 · d-1, i.g. for 17 days) significantly ameliorated EAE progression and demyelination. In conclusion, our results demonstrate that 1,2,4-TTB is an NLRP3 inflammasome inhibitor and attenuates the clinical symptom and inflammation of EAE, suggesting that 1,2,4-TTB is a potential candidate compound for treating NLRP3 inflammasome-driven diseases, such as multiple sclerosis.S100A8/A9 (Calprotectin) serves as a biomarker for various inflammatory diseases, such as for peritonsillar abscess (PTA). Recently, the PTA score was developed for reliable PTA identification. It uses a combination of characteristic clinical symptoms and elevated calprotectin levels in serum and saliva to determine this score. Although well-established point-of-care tests (POCT) to determine serum or faecal calprotectin levels exist, a reliable and rapid tool to analyse salivary calprotectin has not yet been described. In this study, we analysed the potential of the QUANTUM BLUE sCAL Test (QBT, BÜHLMANN Laboratories AG, Switzerland) to determine S100A8/A9 levels during outpatient management. TH-257 These QBT measurements are combined with other clinical factors to determine the PTA score. Significantly higher calprotectin levels were determined by QBT in patients with PTA compared to healthy controls. The receiver operating characteristic (ROC) curves for the QBT revealed cut-off values of 2940 ng/ml (sensitivity = 0.88, specificity = 0.78) in serum and 5310 ng/ml (sensitivity = 0.80, specificity = 0.50) in saliva. By adding the QBT results to determine PTA values, a ROC analysis provided a statistical cut-off score of 2.5 points to identify the existence of a PTA with a sensitivity of 100% and a specificity of 89.3%. The QUANTUM BLUE sCAL Test (QBT) is an appropriate POCT to determine serum and salivary calprotectin levels. Thus, PTA scores can be determined within a short time frame by applying the QBT during outpatient management.Steroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre-Nr5a1 conditional knockout (cKO) mice Sox9-Cre;Nr5a1flox/flox and Sox9-Cre;Nr5a1flox/- mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH+ cells in the gonads of XY Sox9-Cre-Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3βHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1flox/- but not Sox9-Cre;Nr5a1flox/flox mice at E15.5. The presence of STRA8+ cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre-Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre-Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.