dogvision0
dogvision0
0 active listings
Last online 4 months ago
Registered for 4+ months
Ohafia, Bauchi, Nigeria
708202Show Number
Send message All seller items (0) www.selleckchem.com/products/dt-061-smap.html
About seller
Estimating the effects of an intervention from high-dimensional observational data is a challenging problem due to the existence of confounding. The task is often further complicated in healthcare applications where a set of observations may be entirely missing for certain patients at test time, thereby prohibiting accurate inference. In this paper, we address this issue using an approach based on the information bottleneck to reason about the effects of interventions. To this end, we first train an information bottleneck to perform a low-dimensional compression of covariates by explicitly considering the relevance of information for treatment effects. As a second step, we subsequently use the compressed covariates to perform a transfer of relevant information to cases where data are missing during testing. In doing so, we can reliably and accurately estimate treatment effects even in the absence of a full set of covariate information at test time. Our results on two causal inference benchmarks and a real application for treating sepsis show that our method achieves state-of-the-art performance, without compromising interpretability.Massive multiple-input multiple-output (M-MIMO) is a substantial pillar in fifth generation (5G) mobile communication systems. Although the maximum likelihood (ML) detector attains the optimum performance, it has an exponential complexity. Linear detectors are one of the substitutions and they are comparatively simple to implement. Unfortunately, they sustain a considerable performance loss in high loaded systems. They also include a matrix inversion which is not hardware-friendly. In addition, if the channel matrix is singular or nearly singular, the system will be classified as an ill-conditioned and hence, the signal cannot be equalized. To defeat the inherent noise enhancement, iterative matrix inversion methods are used in the detectors' design where approximate matrix inversion is replacing the exact computation. In this paper, we study a linear detector based on iterative matrix inversion methods in realistic radio channels called QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) package. Numerical results illustrate that the conjugate-gradient (CG) method is numerically robust and obtains the best performance with lowest number of multiplications. In the QuaDRiGA environment, iterative methods crave large n to obtain a pleasurable performance. This paper also shows that when the ratio between the user antennas and base station (BS) antennas ( β ) is close to 1, iterative matrix inversion methods are not attaining a good detector's performance.Neuronal noise is a major factor affecting the communication between coupled neurons. In this work, we propose a statistical toolset to infer the coupling between two neurons under noise. We estimate these statistical dependencies from data which are generated by a coupled Hodgkin-Huxley (HH) model with additive noise. To infer the coupling using observation data, we employ copulas and information-theoretic quantities, such as the mutual information (MI) and the transfer entropy (TE). Copulas and MI between two variables are symmetric quantities, whereas TE is asymmetric. We demonstrate the performances of copulas and MI as functions of different noise levels and show that they are effective in the identification of the interactions due to coupling and noise. Moreover, we analyze the inference of TE values between neurons as a function of noise and conclude that TE is an effective tool for finding out the direction of coupling between neurons under the effects of noise.It is well known that two different underlying dynamics lead to different patterns of income/wealth distribution such as the Boltzmann-Gibbs form for the lower end and the Pareto-like power-law form for the higher-end. The Boltzmann-Gibbs distribution is naturally derived from maximizing the entropy of random interactions among agents, whereas the Pareto distribution requires a rational approach of economics dependent on the wealth level. SMAP activator More interestingly, the Pareto regime is very dynamic, whereas the Boltzmann-Gibbs regime is stable over time. Also, there are some cases in which the distributions of income/wealth are bimodal or polymodal. In order to incorporate the dynamic aspects of the Pareto regime and the polymodal forms of income/wealth distribution into one stochastic model, we present a modified agent-based model based on classical kinetic wealth exchange models. First, we adopt a simple two-class society consisting of the rich and the poor where the agents in the same class engage in random exchaopy measure is robust over varying solidarity parameters, implying that there is a trade-off between the intermediate party and the high end.How cognitive neural systems process information is largely unknown, in part because of how difficult it is to accurately follow the flow of information from sensors via neurons to actuators. Measuring the flow of information is different from measuring correlations between firing neurons, for which several measures are available, foremost among them the Shannon information, which is an undirected measure. Several information-theoretic notions of "directed information" have been used to successfully detect the flow of information in some systems, in particular in the neuroscience community. However, recent work has shown that directed information measures such as transfer entropy can sometimes inadequately estimate information flow, or even fail to identify manifest directed influences, especially if neurons contribute in a cryptographic manner to influence the effector neuron. Because it is unclear how often such cryptic influences emerge in cognitive systems, the usefulness of transfer entropy measures to reconstruct information flow is unknown. Here, we test how often cryptographic logic emerges in an evolutionary process that generates artificial neural circuits for two fundamental cognitive tasks (motion detection and sound localization). Besides counting the frequency of problematic logic gates, we also test whether transfer entropy applied to an activity time-series recorded from behaving digital brains can infer information flow, compared to a ground-truth model of direct influence constructed from connectivity and circuit logic. Our results suggest that transfer entropy will sometimes fail to infer directed information when it exists, and sometimes suggest a causal connection when there is none. However, the extent of incorrect inference strongly depends on the cognitive task considered. These results emphasize the importance of understanding the fundamental logic processes that contribute to information flow in cognitive processing, and quantifying their relevance in any given nervous system.

dogvision0's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register