crossjury35
crossjury35
0 active listings
Last online 3 months ago
Registered for 3+ months
Bende, Kaduna, Nigeria
606341Show Number
Send message All seller items (0) www.selleckchem.com/products/4-Methylumbelliferone(4-MU).html
About seller
Fragile X syndrome (FXS) is caused by CGG-repeat expansion in the 5' UTR of FMR1 of >200 repeats. Rarely, FXS is caused by deletions; however, it is not clear whether deletions including only the non-coding region of FMR1 are pathogenic. We report a deletion in the 5' UTR of FMR1 in an unaffected male infant and review 12 reported deletions involving only the non-coding region of FMR1. Genetic testing was requested in a male infant born to a mother harbouring a FMR1 full mutation. The maternal grandmother carried a FMR1 premutation. FMR1 CGG repeats were analysed using repeat-primed PCR. Only a short PCR fragment was amplified and subsequent Sanger sequencing detected an 88 bp deletion in hemizygous form. The deletion included all CGG repeats and flanking sequences but no FMR1 exons. Linkage analysis using STR markers revealed that the deletion had occurred on the allele, which was expanded in the mother and the maternal grandmother. Reverse transcription and quantitative PCR showed normal FMR1 mRNA levels. Grønskov et al. reported a 157 bp deletion of all CGG repeats and flanking sequences in a female without FXS hemizygous for the FMR1 gene due to a deletion on the other X chromosome. Protein expression was unaffected by the deletion. The reported deletion comprises the deletion detected in the male infant. At almost 2 years of age he is unaffected. Based on these observations and the normal FMR1 mRNA level, we conclude that a spontaneous rescue of an FMR1 repeat expansion has occurred. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with predilection for peritoneal dissemination. Accurate peritoneal staging is imperative for treatment recommendations, as one-third of patients develop peritoneal recurrence after resection. Because >90% of PDAC tumors harbor mutant KRAS (mKRAS), we sought to determine feasibility of mKRAS DNA detection in peritoneal lavage (PL) fluid using droplet-digital polymerase chain reaction (ddPCR) via a prospective trial. Patients with nonmetastatic PDAC undergoing staging laparoscopy with PL were included. PL fluid was sent for cytologic examination, CA19-9/CEA levels, and mKRAS ddPCR assay. Clinically positive laparoscopy was defined as gross metastases or positive cytology. PL mKRAS status was compared with gross findings, cytology, and CA19-9/CEA levels. There were 136 patients enrolled; 70 of 136 (51%) patients received neoadjuvant therapy before PL, and 32 of 136 (24%) patients had clinically positive laparoscopy. Cytology was positi was highly associated with clinically positive findings, many clinically negative laparoscopies had detectable PL mKRAS, suggesting that standard staging may be inadequate. Longer follow-up will elucidate utility of this promising molecular assay.In our previous study, we had identified a 9-mer peptide (FSHβ (89-97)) derived from seat belt loop of human FSHβ and demonstrated its ability to function as FSHR antagonist in vivo. Structure analysis revealed that the four central residues 91STDC94 within this peptide may not be critical for receptor binding. In the present study, 91STDC94 residues were substituted with alanine to generate ΔFSHβ 89-97(91STDC94/AAAA) peptide. Analogous to the parent peptide, ΔFSHβ 89-97(91STDC94/AAAA) peptide inhibited binding of iodinated FSH to rat FSHR and reduced FSH-induced cAMP production. The peptide could impede granulosa cell proliferation leading to reduction in FSH-mediated ovarian weight gain in immature female rats. In these rats, peptide administration further downregulated androgen receptor and estrogen receptor-alpha expression and upregulated estrogen receptor-beta expression. The results indicate that substitution of 91STDC94 with alanine did not significantly alter FSHR antagonist activity of FSHβ (89-97) peptide implying that these residues are not critical for FSH-FSHR interaction and can be replaced with non-peptidic moieties for development of more potent peptidomimetics.Human esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in human digestive system. It is necessary to discover novel antitumor agents for the treatment of esophageal cancers because of its poor prognosis. Indoline has been reported as an efficient anticancer fragment to design novel anticancer agents. In this work, indoline derivatives were designed, synthesized and explored their anticancer activity. Compound 9d, which exhibited potent antiproliferative activity with IC50 values of 1.84 μM (MGC-803 cells), 6.82 μM (A549 cells), 1.61 μM (Kyse30 cells), 1.49 μM (Kyse450 cells), 2.08 μM (Kyse510 cells) and 2.24 μM (EC-109 cells), respectively. The most active compound 9d was identified as a tubulin inhibitor targeting colchicine binding site with an IC50 value of 3.4 µM. Compound 9d could strongly suppress the tubulin polymerization in Kyse450 cells. The results of molecular docking also suggested compound 9d could tightly bind into the colchicine binding site of β-tubulin. Besides, compound 9d inhibited the growth of KYSE450 cells in time and dose-dependent manners. All the results suggest that the indoline derivatives might be a class of novel tubulin inhibitors with potential anticancer activity and is worthy of further study.Skin wound repair represents an important topic for the therapeutic challenges. Many molecules are commonly used as active principles of topical devices to induce the correct tissue regeneration. Among these molecules, mesoglycan, a mixture of glycosaminoglycans, and the lactoferrin have recently aroused interest. Here, for the first time, we used mesoglycan/lactoferrin to treat the cell populations mainly involved in wound healing. We showed that human keratinocytes, fibroblasts and endothelial cells migrate and invade more rapidly when treated with the association. Moreover, we found that mesoglycan/lactoferrin, are able to trigger the differentiation process of keratinocytes, the switch of the fibroblasts into myofibroblasts, the acquisition of a mesenchymal phenotype for the endothelial cells which, in this way, start to form the capillary-like structures. Additionally, we proved that the well known antimicrobial behavior of lactoferrin encourages the inhibition of S. 4-MU aureus and P. aeruginosa biofilm formation by the whole association, providing an appealing feature for this formulation.

crossjury35's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register