coastpoland3
coastpoland3
0 active listings
Last online 3 months ago
Registered for 3+ months
Ohafia, Anambra, Nigeria
513871Show Number
Send message All seller items (0) www.selleckchem.com/products/rbn013209.html
About seller
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery nearly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI reaching the energy scale of room temperature, which could support the large spin polarization observed in CISS. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond, respectively, to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.Alkaline earth Rydberg atoms are very promising tools for quantum technologies. Their highly excited outer electron provides them with the remarkable properties of Rydberg atoms and, notably, with a huge coupling to external fields or to other Rydberg atoms while the ionic core retains an optically active electron. However, low angular-momentum Rydberg states suffer almost immediate autoionization when the core is excited. Here, we demonstrate that strontium circular Rydberg atoms with a core excited in a 4D metastable level are impervious to autoionization over more than a few millisecond time scale. This makes it possible to trap and laser-cool Rydberg atoms. Moreover, we observe singlet to triplet transitions due to the core optical manipulations, opening the way to a microwave to optical quantum interface.Large spin Hall angles have been observed in 3d ferromagnets, but their origin, and especially their link with the ferromagnetic order, remain unclear. Here, we investigate the evolution of the inverse spin Hall effect of Ni_60Cu_40 and Ni_50Cu_50 across their Curie temperatures using spin-pumping experiments. We show that the inverse spin Hall effect in these samples is comparable to that of platinum, and that it is insensitive to the magnetic order. These results point toward a Heisenberg localized model of the transition and suggest that the large spin Hall effects in 3d ferromagnets can be independent of the magnetic phase.We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, which we dub a 2nd-order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators (QI) to identify three types of WSM phases 1st order, 2nd order, and hybrid order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. After a comprehensive analysis of the topological properties of various HOWSMs, we turn to their physical implications that show the very distinct behavior of 2nd-order Weyl nodes when they are gapped out. We obtain three remarkable results (i) the coupling of a 2nd-order Weyl phase with a conventional 1st-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. (ii) A nested 2nd-order inversion-symmetric WSM by a charge-density wave (CDW) order generates an insulating phase having coexisting flatband surface and hinge states all over the Brillouin zone. (iii) A CDW order in a time-reversal symmetric higher-order WSM gaps out a 2nd-order node with a 1st-order node and generates an insulating phase having coexisting surface Dirac cone and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help to identify some classes of 2nd-order WSMs. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd_3As_2, KMgBi, and rutile-structure PtO_2 that have been predicted to realize higher order Dirac semimetals.We study hydrodynamic interactions and clustering mechanisms of active membrane inclusions within lipid bilayers. Pairs of inclusions display unique oscillatory dynamics that disappear when the 3D fluid adjacent to the membrane is confined. We reduce the governing equations to a coupled dynamical system whose phase behavior reveals the striking role of bulk confinement in enhancing cluster formation within the membrane. Using numerical simulations, we then extend this finding to demonstrate the role of confinement in controlling large-scale aggregation of membrane inclusions.The quantum approximate optimization algorithm (QAOA) employs variational states generated by a parameterized quantum circuit to maximize the expected value of a Hamiltonian encoding a classical cost function. Whether or not the QAOA can outperform classical algorithms in some tasks is an actively debated question. Our work exposes fundamental limitations of the QAOA resulting from the symmetry and the locality of variational states. A surprising consequence of our results is that the classical Goemans-Williamson algorithm outperforms the QAOA for certain instances of MaxCut, at any constant level. To overcome these limitations, we propose a nonlocal version of the QAOA and give numerical evidence that it significantly outperforms the standard QAOA for frustrated Ising models.We theoretically investigate the dynamics of magnetic hedgehogs, which are three-dimensional topological spin textures that exist in common magnets, focusing on their transport properties and connections to spintronics. We show that fictitious magnetic monopoles carried by hedgehog textures obey a topological conservation law, based on which a hydrodynamic theory is developed. We propose a nonlocal transport measurement in the disordered phase, where the conservation of the hedgehog flow results in a nonlocal signal decaying inversely proportional to the distance. RBN013209 The bulk-edge correspondence between the hedgehog number and skyrmion number, the fictitious electric charges arising from magnetic dynamics, and the analogy between bound states of hedgehogs in ordered phase and the quark confinement in quantum chromodynamics are also discussed. Our study points to a practical potential in utilizing hedgehog flows for long-range neutral signal propagation or manipulation of skyrmion textures in three-dimensional magnetic materials.

coastpoland3's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register