About seller
1%). For MEC-EFS, enriched Ruminococcus and Geobacter in anodic biofilm might contribute to favorable biohydrogenation and electrochemical performance.Sargassum spp is an invasive macroalgae and an alternative feedstock for bioethanol production. CFDA-SE Sargassum spp biomass was subjected to high-pressure technology for biomass fractionation under different operating conditions of temperature and residence time to obtain glucan enriched pretreated solids (32.22 g/100 g of raw material). Enzyme hydrolysis process at high pretreated solid loading (13%, w/v) and enzyme loading of 10 FPU/g of glucan was performed, obtaining 43.01 g/L of glucose corresponding to a conversion yield of 92.12%. Finally, a pre-simultaneous saccharification and fermentation strategy (PSSF) was performed to produce bioethanol. This operational strategy produced 45.66 g/L of glucose in the pre-saccharification stage, and 18.14 g/L of bioethanol was produced with a glucose to bioethanol conversion yield of 76.23%. The development of this process highlights the feasibility of bioethanol production from macroalgal biomass in the biorefinery concept.In China, more than 3.5 million tons of Camellia oleifera discarded shells are produced every year. This work first prepared phosphorus-containing biochar (PBC) from C. oleifera shells and was successfully applied to the efficient removal of tetracycline (TC) from solutions. The prepared PBC exhibits superior TC adsorption capacity of 451.5 mg/g, and TC uptake rapidly reached 315.5 mg/g at the first 5 min (C0 = 50 mg/L). Furthermore, PBC also shows excellent applicability to the broad range pH value (1-9) and superior selective removal in the presence of various high concentration coexisting ions (1 mM). Mechanisms underlying TC adsorption were also put forward, and analysis suggested that pyrophosphate-like surface functional groups (C-O-P bond) played a critical role in this process. Notably, treating pharmaceutical wastewater with PBC can efficiently reduce chemical oxygen demand (COD) and total organic carbon (TOC) concentration below the discharge standard of China (GB21904-2008).Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered. The dynamic plantar pressure patterns of children and adolescents with Charcot-Marie-Tooth (CMT) disease and its relationship to musculoskeletal alterations may help to understand the natural history of the disease and improve therapeutic interventions. The study compared dynamic plantar pressure patterns in children and adolescents with and without CMT. It also tested the associations between isometric muscle strength (IMS), passive range of motion (ROM), foot posture and dynamic plantar pressure patterns in CMT. This cross-sectional study compared children and adolescents (aged 8-18 years) with CMT (n = 40) with a typical group (n = 40). The plantar pressure distribution during gait was recorded, and the contact area (CA), peak pressure (PP), contact time (CT) and pressure-time integral (PTI) in five foot regions (rearfoot, midfoot lateral, midfoot medial, lateral forefoot and medial forefoot) were analysed. The IMS of the dorsiflexors and plantar flexors, passive ROM, and foot posture were also recornformation together with the associations established between supinated foot, dorsiflexion ROM and plantar flexions IMS can be useful for guiding rehabilitation professionals in their therapies. Limited passive ankle dorsiflexion range has been associated with increased knee valgus during functional tasks. Increased knee valgus is considered a contributing factor for musculoskeletal disorders in the lower limb. There is conflicting evidence supporting this association. The extent of passive ankle dorsiflexion range is associated with dynamic ankle dorsiflexion range and the way how these variables are related to lower limb or trunk kinematics is unclear. What is the association between passive ankle dorsiflexion range or dynamic ankle dorsiflexion range with shank, thigh, pelvis or trunk movements during the single-leg squat? This is a cross-sectional study with a convenience sample. Thirty uninjured participants performed the single-leg squat with their dominant limb. Ankle, shank, thigh, pelvis and trunk 3D kinematics were recorded. Passive ankle dorsiflexion range was assessed through the weight-bearing lunge test and the dynamic ankle dorsiflexion range was defined as the ankle dorsiflexion range of motion in the sagittal plane during the single-leg squat. Greater passive ankle dorsiflexion range was associated with smaller thigh internal rotation (r= -0.38). Greater dynamic ankle dorsiflexion range was associated with smaller trunk flexion (r = 0.59) and pelvis anteversion (r= -0.47). Passive ankle dorsiflexion range and dynamic ankle dorsiflexion range were not associated. Greater passive ankle dorsiflexion range seems to be associated with a better lower limb alignment during the single-leg squat, while dynamic ankle dorsiflexion range seems to reflect different lower limb and trunk kinematic strategies.Greater passive ankle dorsiflexion range seems to be associated with a better lower limb alignment during the single-leg squat, while dynamic ankle dorsiflexion range seems to reflect different lower limb and trunk kinematic strategies.