About seller
Our results provide additional information for functional dissection and evolutionary analysis of MUR3 genes derived from brassicaceous species.Despite evidence from anatomy, behavior and genomics indicating that the sense of smell in turtles is important, our understanding of chemical communication in this group is still rudimentary. Our aim was to describe the microanatomy of mental glands (MGs) in a freshwater turtle, Mauremys leprosa (Geoemydidae), and to assess the chemical composition of their secretions with respect to variation among individuals and between sexes. MGs are paired sac-like organs on the gular region of the neck and are dimorphic in this species with males having fully functional holocrine glands while those of females appear non-secretory and vestigial. In adult males, the glandular epithelium of the inner portion of the gland provides exocytotic products as well as cellular debris into the lumen of the gland. The contents of the lumen can be secreted through the narrow duct portion of the gland ending in an orifice on the surface of the skin. Females have invaginated structures similar in general outline to male glands, but lack a glandular epithelium. Using gas chromatography coupled to mass spectrometry, we identified a total of 61 compounds in mental gland secretions, the most numerous being carboxylic acids, carbohydrates, alkanes, steroids and alcohols. The number of compounds per individual varied widely (mean (median) ± SD = 14.54 (13) ± 8.44; min = 3; max = 40), but only cholesterol was found in all samples. We found that the relative abundances of only six chemicals were different between the sexes, although males tended to have larger amounts of particular compounds. Although the lipid fraction of mental gland secretions is rich in chemical compounds, most occur in both sexes suggesting that they are metabolic byproducts with no role in chemical signaling. However, the relative amounts of some compounds tended to be higher in males, with significantly larger amounts of two carboxylic acids and one steroid, suggesting their putative involvement in chemical communication.'Animal personality' is considered to be developed through complex interactions of an individual with its surrounding environment. RIN1 mw How can we quantify the 'personality' of an individual? Quantifying intra- and inter-individual variability of behavior, or individual behavioral type, appears to be a prerequisite in the study of animal personality. We propose a statistical method from a predictive point of view to measure the appropriateness of our assumption of 'individual' behavior in repeatedly measured behavioral data from several individuals. For a model case, we studied the sponge crab Lauridromia dehaani known to make and carry a 'cap' from a natural sponge for camouflage. Because a cap is most likely to be rebuilt and replaced repeatedly, we hypothesized that each individual crab would grow a unique behavioral type and it would be observed under an experimentally controlled environmental condition. To test the hypothesis, we conducted behavioral experiments and employed a new Bayesian model-based compari limited to behavioral data but is also applicable to physiological or morphological data when examining whether some group structure exists behind fluctuating empirical data.Galeaspids are an endemic clade of jawless stem-gnathostomes known as ostracoderms. Their existence illuminates how specific characteristics developed in jawed vertebrates. Sinogaleaspids are of particular interest among the galeaspids but their monophyly is controversial because little is known about Sinogaleaspis xikengensis. Newly discovered sinogaleaspids from the Lower Silurian of Jiangxi, China provide a wealth of data and diagnostic features used to establish the new genus, Rumporostralis gen. nov., for Sinogaleaspis xikengensis. A morphological study showed that the sensory canal system of sinogaleaspids had mosaic features similar to those of three known galeaspids. There are 3-8 pairs of transverse canals in the Sinogaleaspidae, which suggests that the sensory canal system of galeaspid probably had a grid distribution with transverse canals arranged throughout the cephalic division. Phylogenetic analysis of Galeaspida supports the monophyly of the Sinogaleaspidae, consisting of Sinogaleaspis, Rumporostralis, and Anjiaspis. However, Shuyu and Meishanaspis form another monophyletic group, Shuyuidae fam. nov., which is outside all other eugaleaspidiforms. We propose a cladistically-based classification of Galeaspida based on our analysis.Background In the last decades, Italy as well as other developed countries have registered a decrease in the population size of many local horse breeds. The continuous crossbreeding has determined the dilution of genetic heritage of several native breeds. The Italian Heavy Draught Horse (IHD) is the only autochthonous Italian coldblooded horse among these breeds; therefore, it represents a resource to be preserved. In 1927, the first generation of this breed was officially created by crossing different Heavy Draught horses with local mares and recorded in a Studbook. Methodology To provide the first comprehensive overview of the genetic diversity of Italian Heavy Draught horses from Central Italy, we produced and phylogenetically analysed 52 mitochondrial DNA (mtDNA) control-region sequences. Furthermore, we evaluated data available from GenBank (N = 568) to have a more complete scenario and to understand the relationships with other European Heavy Draught horse breeds. Results Among the IHD samples that were analysed, we identified ten of the 17 haplogroups described in modern horses. Most of these sequences fell into L, G, and M lineages, thus showing the overall mtDNA legacy of the ancestral mares that were probably used at the initial stages of breeding selections a long time ago. The high mitochondrial haplotype diversity (Hd = 0.969) found in our samples reflected the multiple maternal origins of the horses. Our results highlighted a considerable percentage of haplotypes shared especially with Bardigiano and Hungarian Heavy Draught breeds. Furthermore, both the presence of four unique haplotypes detected in our samples and their absence among all equine mitochondrial published data demonstrate a mitochondrial peculiarity that needs to be further investigated and preserved with careful breeding practices.