About seller
Diabetic encephalopathy is a severe diabetes complication with cognitive dysfunction and neuropsychiatric disability. The mechanisms underlying diabetic encephalopathy is believed to be relevant with oxidative stress, vascular amylin deposition, immune receptors, inflammation, etc. This study wanted to evaluate the ability of curcumin and its analog A13 to alleviate oxidative stress and inflammation in diabetes-induced damages in brain. Sixty adult male Sprague-Dawley rats were divided into 5 groups normal control (NC) group, diabetes mellitus (DM) group, curcumin-treated diabetes mellitus (CUR) group, high dose of A13-treated diabetes mellitus (HA) group, low dose of A13-treated diabetes mellitus (LA) group. Activation of the nuclear factor kappa-B (NF-κB p65) pathway was detected by RT-qPCR, immunohistochemical (IHC) staining and Western blot; oxidative stress was detected by biochemical detection kit; brain tissue sections were stained with hematoxylin-eosin (HE) staining and Myelin staining. RT-qPCR, IHC staining and Western blot showed that curcumin and A13 treatment could inhibit the NF-κB p65 pathway. Curcumin and A13 increased the activity of superoxide dismutase and decreased the malondialdehyde level in the brain of diabetic rats. Furthermore, HE staining and Myelin staining demonstrated that the histological lesions of the brain in diabetic rats could be significantly ameliorated by curcumin and A13. Curcumin analog A13 could alleviate the damages in the brain of diabetes rats by regulating the pathways of inflammation and oxidative stress. A13 may be a new potential therapeutic agent for diabetic encephalopathy.Curcumin analog A13 could alleviate the damages in the brain of diabetes rats by regulating the pathways of inflammation and oxidative stress. A13 may be a new potential therapeutic agent for diabetic encephalopathy. The aim of the study was to evaluate the ultrasound-derived measurements of the fetal soft-tissue, heart, liver and umbilical cord in pregnancies complicated by gestational (GDM) and type 1 diabetes mellitus (T1DM), and further to assess their applicability in the estimation of the fetal birth-weight and prediction of fetal macrosomia. Measurements were obtained from diet-controlled GDM (GDMG1) (n = 40), insulin-controlled GDM (GDMG2) (n = 40), T1DM (n = 24) and healthy control (n = 40) patients. The following parameters were selected for analysis fetal sub-scapular fat mass (SSFM), abdominal fat mass (AFM), mid-thigh fat/lean mass (MTFM/MTLM) and inter-ventricular septum (IVS) thicknesses, heart and thorax circumference and area (HeC/HeA; ThC/ThA), liver length (LL), umbilical cord/vein/arteries circumference and area (UmC/UmA; UvC/UvA; UaC/UaA) together with total umbilical vessels (UveA) and Wharton's jelly area (WjA). Regression models were created in order to assess the contribution of selected paramsitive predictive value 54.5% and negative predictive value of 97.8% in the prediction of fetal macrosomia. Ultrasound measurements of the fetal soft tissue, heart, liver and umbilical cord are significantly increased among women with GDM treated with insulin and T1DM. In addition to standard biometric measurements, parameters, such as AFM, may find application in the management of diabetes-complicated pregnancies.Ultrasound measurements of the fetal soft tissue, heart, liver and umbilical cord are significantly increased among women with GDM treated with insulin and T1DM. In addition to standard biometric measurements, parameters, such as AFM, may find application in the management of diabetes-complicated pregnancies. Fear of weight gain is a characteristic feature of anorexia nervosa (AN), and reducing this fear is often a main target of treatment. However, research shows that 20% of individuals with AN do not report fear of weight gain. Studies are needed that evaluate the centrality of fear of weight gain for AN with a method less susceptible to deception than self-report. We approximated implicit fear of weight gain by measuring implicit drive for thinness using implicit association tests (IATs). We asked 64 participants (35 AN, 29 healthy controls [HCs]) to categorize statements as pro-dieting vs. non-dieting and true vs. false in a questionnaire-based IAT, and pictures of underweight vs. normal-weight models and positive vs. SB-297006 negative words in a picture-based IAT using two response keys. We tested for associations between implicit drive for thinness and explicitly reported psychopathology within AN as well as group differences between AN and HC groups. Correlation analyses within the AN group showed that higher implicit drive for thinness was associated with more pronounced eating disorder-specific psychopathology. Furthermore, the AN group showed a stronger implicit drive for thinness than HCs in both IATs. The results highlight the relevance of considering fear of weight gain as a continuous construct. Our implicit assessment captures various degrees of fear of weight gain in AN, which might allow for more individually tailored interventions in the future.The results highlight the relevance of considering fear of weight gain as a continuous construct. Our implicit assessment captures various degrees of fear of weight gain in AN, which might allow for more individually tailored interventions in the future.Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857-1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs.