About seller
The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 μg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.Favipiravir is an oral broad-spectrum inhibitor of viral RNA-dependent RNA polymerase that is approved for treatment of influenza in Japan. We conducted a prospective, randomized, open-label, multicenter trial of favipiravir for the treatment of COVID-19 at 25 hospitals across Japan. Eligible patients were adolescents and adults admitted with COVID-19 who were asymptomatic or mildly ill and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomly assigned at a 11 ratio to early or late favipiravir therapy (in the latter case, the same regimen starting on day 6 instead of day 1). The primary endpoint was viral clearance by day 6. The secondary endpoint was change in viral load by day 6. LY333531 order Exploratory endpoints included time to defervescence and resolution of symptoms. Eighty-nine patients were enrolled, of whom 69 were virologically evaluable. Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76 to 2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, times to defervescence were 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95% CI, 0.81 to 4.35). During therapy, 84.1% developed transient hyperuricemia. Favipiravir did not significantly improve viral clearance as measured by reverse transcription-PCR (RT-PCR) by day 6 but was associated with numerical reduction in time to defervescence. Neither disease progression nor death occurred in any of the patients in either treatment group during the 28-day participation. (This study has been registered with the Japan Registry of Clinical Trials under number jRCTs041190120.).Cefiderocol is a parenteral siderophore cephalosporin with a catechol-containing 3' substituent. We evaluated its MICs against Gram-negative bacteria, using iron-depleted Mueller-Hinton broth. The panel comprised 305 isolates of Enterobacterales, 111 of Pseudomonas aeruginosa, and 99 of Acinetobacter baumannii, all selected for carbapenem resistance and multidrug resistance to other agents. At 2 and 4 μg/ml, cefiderocol inhibited 78.7 and 92.1%, respectively, of all Enterobacterales isolates tested, with rates of 80 to 100% for isolates with all modes of carbapenem resistance except NDM enzymes (41.0% inhibited at 2 μg/ml and 72.1% at 4 μg/ml) or combinations of extended-spectrum β-lactamase (ESBL) and porin loss (61.5% inhibited at 2 μg/ml and 88.5% at 4 μg/ml). Cefiderocol also inhibited 81.1 and 86.5% of all P. aeruginosa isolates at 2 and 4 μg/ml, respectively, with rates of 80 to 100% for isolates with VIM, IMP, GES, or VEB β-lactamases and slightly lower rates for those with NDM (45.5% at 2 μg/ml and 72.7% at 4 μg/ml) and PER (66.7% at 2 μg/ml and 73.3% at 4 μg/ml) enzymes; 63.3% of P. aeruginosa isolates were inhibited at the FDA's 1-μg/ml breakpoint. Lastly, cefiderocol at 2 and 4 μg/ml inhibited 80.8 and 88.9% of the A. baumannii isolates, respectively, with rates of >85% for isolates with OXA-51-like, -23, -24, or -58 enzymes and 50% at 2 μg/ml and 80% at 4 μg/ml for those with NDM carbapenemases. Dipicolinic acid and avibactam weakly potentiated cefiderocol against Enterobacterales isolates with metallo-β-lactamases (MBLs) and serine carbapenemase, respectively, indicating incomplete β-lactamase stability.Comparative genomics identified the environmental bacterial genus Shinella as the most likely origin of the class A carbapenemases BKC-1 and GPC-1. Available sequences and PCR analyses of additional Shinella species revealed homologous β-lactamases showing up to 85.4% and 93.3% amino acid identity to both enzymes, respectively. The genes conferred resistance to β-lactams once expressed in Escherichia coliblaBKC-1 likely evolved from a putative ancestral Shinella gene with higher homology through duplication of a gene fragment.We applied combination antibiotic therapy to treat vertebral osteomyelitis and a psoas abscess caused by glycopeptide-intermediate (MIC, 2 μg/ml) and daptomycin-nonsusceptible (>2 μg/ml) methicillin-resistant Staphylococcus aureus The Etest synergy test showed the largest synergistic effects for imipenem/cilastatin and fosfomycin. Whole-gene sequencing showed amino acid changes in SA0802, SA1193 (mprF), and SA1531 (ald). Four weeks of combination treatment using imipenem/cilastatin (1.5 g per day) and fosfomycin (4.0 g per day) resulted in clinical improvement.Spiroketal indolyl Mannich bases (SIMBs) present a novel class of membrane-inserting antimycobacterials with efficacy in a tuberculosis mouse model. SIMBs exert their antibacterial activity by two mechanisms. The indolyl Mannich base scaffold causes permeabilization of bacteria, and the spiroketal moiety contributes to inhibition of the mycolic acid transporter MmpL3. Here, we show that low-level resistance to SIMBs arises by mutations in the transcriptional repressor MmpR5, resulting in upregulation of the efflux pump MmpL5.