appleroast6
appleroast6
0 active listings
Last online 1 week ago
Registered for 1+ week
Ukwa West, Katsina, Nigeria
513871Show Number
Send message All seller items (0) www.selleckchem.com/products/U0126.html
About seller
Sub-wavelength aperture arrays featuring small gaps have an extraordinary significance in enhancing the interactions of terahertz (THz) waves with matters. But it is difficult to obtain large light-substance interaction enhancement and high optical response signal detection capabilities at the same time. Here, we propose a simple terahertz bow-tie aperture arrays structure with a large electric field enhancement factor and high transmittance at the same time. The field enhancement factor can reach a high value of 1.9×104 and the transmission coefficient of around 0.8 (the corresponding normalized-to-area transmittance is about 14.3) at 0.04 µm feature gap simultaneously. The systematic simulation results show that the designed structure can enhance the intensity of electromagnetic hotspot by continuously reducing the feature gap size without affecting the intensity of the transmittance. We also visually displayed the significant advantages of extremely strong electromagnetic hot spots in local terahertz refractive index detection, which provides a potential platform and simple strategy for enhanced THz spectral detection.Research has shown that the ignition characteristics of laser-induced plasmas in fuel-air mixtures are influenced by the gas dynamics effects induced during the gas breakdown stage. Here, we present the numerical modeling of the fluid mechanics induced by breakdown (plasma formation) from a nanosecond near-infrared (NIR) laser pulse in air. The simulations focus on the post-discharge kernel dynamics with the goal of developing a better understanding of how vorticity is generated during the kernel cooling phase. Initial conditions (ICs) of kernel shape, temperature, and pressure (corresponding to the end of the laser pulse) are found from experimental Rayleigh scattering data. It is shown that this method for determining ICs is preferred versus the use of the Taylor-Sedov blast wave theory as it provides a more accurate description of the starting field. Past experimental observations have revealed that the gas dynamics of nanosecond laser sparks typically lead to the formation of an asymmetric torus with a frontal lobe propagating towards the laser source. We show that the development of the asymmetric torus is governed by strong vorticity generated through baroclinic torque arising from the blast wave that forms at the kernel boundary. Initially, the blast takes the shape of the teardrop kernel but then evolves into a spherical front during the first ∼10 µs because the blast wave strength varies along its circumference. This spatial variation leads to a misalignment between the pressure and density gradients and generation of vorticity by baroclinic torque. Ultimately, the observed flow-field is dictated by how the energy was initially deposited around the beam waist during breakdown. As such, one can tailor the aerodynamics induced during the cooling and recombination phase by controlling the energy deposition profile.Frequency scanning interferometry (FSI) is a promising technique for absolute distance measurement and has been demonstrated in many industrial applications. However, in practice, the measurement precision is limited and sensitive to the variations of the measured distance while sweeping the optical frequency of the laser. The induced errors would be amplified by hundreds of times due to the magnification effect. In this paper, an incremental interferometer was established on the basic scheme of the FSI system for monitoring the variations of distance. The compensation could be achieved by multiplying the heterodyne signals from monitor and measurement interferometer without complex and time-costing data processing. The system performance has been verified by experiments for different kinds of vibrating targets. Finally, after compensation by suppression of the magnification effects, a measurement precision of 4.26 μm has been achieved in a range of 10 m.Metamaterials are intriguing candidates for energy conversion systems, and contribute to the control of thermal radiation spectra. Large-scale devices are required to provide high energy flux transfer. U0126 However, the surface microstructure of large-scale metamaterials suffers from fabrication defects, inducing optical property degradation. We develop a novel approach to quantitatively evaluate the optical properties of defective 2D metamaterials based on diffraction imaging. The surrogate surface structure is reconstructed from diffraction pattern, and analyzed geometrical features to evaluate the optical properties. This approach shows potential for in-line and real-time continuous diagnosis during industrial fabrication, and high-throughput for large-scale 2D metamaterial.In this contribution, we report on the generation of internal microchannels with basically unlimited channel length inside of PMMA bulk material by femtosecond laser. A precisely controllable and stable circular channel cross section is obtained by using a spatial light modulator to compensate the writing depth depending spherical aberration. Furthermore, the generation of a rotatable elliptical input beam by adaptive optics ensures a fitting of the beam shaping to the writing direction. In this study, we report on both, the effect of the ellipticity of the input beam and the effect of a correction of the spherical aberration on the circularity of the resulting internal microchannels. Moreover, we demonstrate the application of this writing technique by creating microfluidic testing structures inside of a transparent standard polymer.We report on the experimental results of a passively mode-locked vertical external cavity surface emitting laser (VECSEL), implemented in a W-cavity configuration, using a lithium triborate (LBO) crystal for intra-cavity second harmonic generation (SHG) at 528 nm. The W-cavity configuration allows separation of the crystal from the semiconductor saturable absorber mirror (SESAM), enabling independent control over the Gaussian beam sizes at the crystal, chip, and SESAM. This optimized cavity demonstrated a second harmonic pulse width of ~760 fs at a frequency of 465 MHz and 230 mW average output power, resulting in a peak pulse power of 580 W.

appleroast6's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register