altoground56
altoground56
0 active listings
Last online 2 months ago
Registered for 2+ months
Bende, Sokoto, Nigeria
513871Show Number
Send message All seller items (0) www.selleckchem.com/products/cpd-37.html
About seller
ighlighting a few applications of the system. The system is designed to fundamentally improve the accuracy and time of cell culture analysis while also allowing us to perform the assay without trypsinization, thus avoiding the need to replicate multiple wells for monitoring cell growth over time.Necroptosis is a regulated form of necrosis that depends on receptor-interacting protein kinase (RIPK)3 and mixed lineage kinase domain-like protein (MLKL). Necroptotic cells release a variety of cellular and nuclear factors, referred to as danger-associated molecular patterns (DAMPs). We recently developed a förster resonance energy transfer (FRET) biosensor, termed SMART (a sensor for MLKL activation based on FRET). SMART comprises a fragment of MLKL, and it monitors necroptosis, but not apoptosis or necrosis. We performed live-cell imaging for secretion activity (LCI-S) to observe the release of high-mobility group box 1 (HMGB1) from necroptotic cells at single-cell resolution. Moreover, we combined SMART and LCI-S imaging techniques and found two different modes of HMGB1 release from necroptotic cells. Thus, SMART and LCI-S are valuable tools for investigating intimate cross talk between necroptosis and DAMP release at single-cell resolution.The present protocol introduces a live-cell imaging of secretion activity (LCI-S) that is useful to visualize the real-time release of molecules from individual cells using an immunoassay coupled with total internal reflection fluorescence (FL) microscopy. This novel "live"-cell imaging technique has helped uncover the dynamics of regulated cell "death" by using this new approach. This protocol can observe the final stages of the regulated cell death process via single-cell imaging by targeting the extracellular release of damage-associated molecular patterns (DAMPs) from the cells expressing fluorescence resonance energy transfer (FRET) biosensors, such as a sensor for MLKL activation by RIPK3 based on FRET (SMART) and a sensor for caspase-1 activation based on FRET (SCAT1), which specifically identify the occurrence of regulated cell death processes.GPCR signaling is the most prevailing molecular mechanism for detecting ambient signals in eukaryotes. Chemotactic cells use GPCR signaling to process chemical cues for directional migration over a broad concentration range and with high sensitivity. Dictyostelium discoideum is a classical model, in which the molecular mechanism underlying eukaryotic chemotaxis has been well studied. Here, we describe protocols to evaluate the spatiotemporal chemotactic responses of Dictyostelium discoideum by different microscopic observations combined with biochemical assays. First, two different chemotaxis assays are presented to measure the dynamic concentration ranges for different cell strains or chemotactic parameters. Next, live-cell imaging and biochemical assays are provided to detect the activities of GPCR and its partner heterotrimeric G proteins upon chemoattractant stimulation. Finally, a method for detecting how a cell deciphers chemical gradients is described.Bioluminescence resonance energy transfer (BRET) is an energy transfer phenomenon from a luciferase donor to a fluorescence acceptor and serves as an indicator of protein-protein interaction or protein proximity. BRET imaging is a powerful tool in the investigation of signaling proteins because it enables spatial analysis of such protein interactions. Here, we describe a method exerting high-resolution BRET imaging by combining bright-light output luciferases, such as NanoLuc , photon-counting EM-CCD, and unique algorithms for image correction and denoising.The application of smartphones as detectors is essential to achieve ubiquitous measurement targeting biomolecules. Because bioluminescence (BL), as a tag for a target sample, does not require an excitation light source, it can be combined with a smartphone to constitute a compact and mobile measurement system. A method was recently established to detect the spectral change of ratiometric indicators based on bioluminescence resonance energy transfer with a smartphone camera. Cpd. 37 For example, it was possible to detect changes in the BL color of the Ca2+ indicator quantitatively and easily calculate the concentration of free Ca2+ by setting appropriate image acquisition conditions in a smartphone application. In this paper, we describe techniques to obtain scientifically relevant and reliable BL data with such a convenient instrument. This protocol expands the potential of the smartphone as a personal imaging device with high mobility that can be used anywhere.Optogenetic calcium sensors enable the imaging in real-time of the activities of single or multiple neurons in brain slices and in vivo. Bioluminescent probes engineered from the natural calcium sensor aequorin do not require illumination, are virtually devoid of background signal, and exhibit wide dynamic range and low cytotoxicity. These probes are thus well suited for long-duration, whole-field recordings of multiple neurons simultaneously. Here, we describe a protocol for monitoring and analyzing the dynamics of neuronal ensembles using whole-field bioluminescence imaging of an aequorin-based sensor in brain slice.A method to generate small amount of reactive oxygen species (ROSs) at intracellular targeted region has great potential to manipulate the function of particular proteins. The present protocol introduces a fusion protein that consisted of firefly luciferase (FLuc), photosensitizer protein KillerRed and F-actin-targeting peptide Lifeact (Lifeact-KillerFirefly) to generate ROSs in the vicinity of F-actin and found that morphological change in F-actin structure was induced by the fusion protein after luciferin treatment. This manipulating and imaging method is of use to analyze the role of the locally generated ROSs on the function of intracellular proteins.Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions. The present protocol introduces a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length artificial luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched in between a protein pair of interest, FRB and FKBP, and further linked to a fluorescent protein as the energy acceptor for studying protein-protein interaction. A specific ligand, rapamycin, which initiates intramolecular interactions of FRB and FKBP inside the probe, which develops molecular strain in the sandwiched ALuc23 to complete its folding, thus, the probe system greatly enhances both the overall bioluminescence (BL) spectrum and the BRET signal in the far-red (FR) region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR-BL signals in mammalian cells.

altoground56's listings

User has no active listings
Start selling your products faster and free Create Acount With Ease
Non-logged user
Hello wave
Welcome! Sign in or register